{"title":"多孔金属气体扩散层质子交换膜燃料电池的多相流动与传热研究","authors":"T. Berning, Shiro Tanaka","doi":"10.1115/ajkfluids2019-4654","DOIUrl":null,"url":null,"abstract":"\n A numerical analysis of a proton exchange membrane fuel cell (PEMFC) that contains a perforated metal plate at the cathode side has been conducted. The model utilizes the Eulerian multi-phase approach to predict the occurrence and transport of liquid water inside the cell. The PEMFC that was modelled contained micro-channels at both anode and cathode side. Results suggest that despite the fact that the inlet gases are fully saturated (RH = 100%), the holes in the metal sheet remain in the single phase, and the predicted maximum current densities are accordingly high. The high thermal conductivity of the metal sheets result in only a moderate temperature increase in the cell, and the fuel cell membrane is predicted to be hydrated under all conditions investigated. The fact that the cathode channel and the holes in the metal sheet remain dry is attributed to the high pressure drop inside the flow channel.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Multiphase Flow and Heat Transfer in Proton Exchange Membrane Fuel Cells With Perforated Metal Gas Diffusion Layers\",\"authors\":\"T. Berning, Shiro Tanaka\",\"doi\":\"10.1115/ajkfluids2019-4654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A numerical analysis of a proton exchange membrane fuel cell (PEMFC) that contains a perforated metal plate at the cathode side has been conducted. The model utilizes the Eulerian multi-phase approach to predict the occurrence and transport of liquid water inside the cell. The PEMFC that was modelled contained micro-channels at both anode and cathode side. Results suggest that despite the fact that the inlet gases are fully saturated (RH = 100%), the holes in the metal sheet remain in the single phase, and the predicted maximum current densities are accordingly high. The high thermal conductivity of the metal sheets result in only a moderate temperature increase in the cell, and the fuel cell membrane is predicted to be hydrated under all conditions investigated. The fact that the cathode channel and the holes in the metal sheet remain dry is attributed to the high pressure drop inside the flow channel.\",\"PeriodicalId\":346736,\"journal\":{\"name\":\"Volume 2: Computational Fluid Dynamics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computational Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-4654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Multiphase Flow and Heat Transfer in Proton Exchange Membrane Fuel Cells With Perforated Metal Gas Diffusion Layers
A numerical analysis of a proton exchange membrane fuel cell (PEMFC) that contains a perforated metal plate at the cathode side has been conducted. The model utilizes the Eulerian multi-phase approach to predict the occurrence and transport of liquid water inside the cell. The PEMFC that was modelled contained micro-channels at both anode and cathode side. Results suggest that despite the fact that the inlet gases are fully saturated (RH = 100%), the holes in the metal sheet remain in the single phase, and the predicted maximum current densities are accordingly high. The high thermal conductivity of the metal sheets result in only a moderate temperature increase in the cell, and the fuel cell membrane is predicted to be hydrated under all conditions investigated. The fact that the cathode channel and the holes in the metal sheet remain dry is attributed to the high pressure drop inside the flow channel.