实现神经网络的海量内存组织

M. Misra, V. Prasanna
{"title":"实现神经网络的海量内存组织","authors":"M. Misra, V. Prasanna","doi":"10.1109/ICPR.1990.119367","DOIUrl":null,"url":null,"abstract":"A single-input multiple-data architecture which has n processing elements and n/sup 2/ memory modules arranged in an n*n array is presented. This massive memory is used to store the weights of the neural network being simulated. It is shown how networks with sparse connectivity among neurons can be simulated in O( square root n+e) time. where n is the number of neurons and e the number of interconnections in the network. Preprocessing is carried out on the connection matrix of the sparse network resulting in data movement that has an optimal asymptotic time complexity and a small constant factor.<<ETX>>","PeriodicalId":135937,"journal":{"name":"[1990] Proceedings. 10th International Conference on Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Massive memory organizations for implementing neural networks\",\"authors\":\"M. Misra, V. Prasanna\",\"doi\":\"10.1109/ICPR.1990.119367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single-input multiple-data architecture which has n processing elements and n/sup 2/ memory modules arranged in an n*n array is presented. This massive memory is used to store the weights of the neural network being simulated. It is shown how networks with sparse connectivity among neurons can be simulated in O( square root n+e) time. where n is the number of neurons and e the number of interconnections in the network. Preprocessing is carried out on the connection matrix of the sparse network resulting in data movement that has an optimal asymptotic time complexity and a small constant factor.<<ETX>>\",\"PeriodicalId\":135937,\"journal\":{\"name\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1990.119367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. 10th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1990.119367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种单输入多数据结构,该结构具有n个处理单元和n/sup /内存模块,排列成n*n数组。这个巨大的内存用来存储被模拟的神经网络的权重。它显示了神经元之间具有稀疏连接的网络如何在O(平方根n+e)时间内模拟。其中n是神经元的数量,e是网络中互连的数量。对稀疏网络的连接矩阵进行预处理,使数据移动具有最优的渐近时间复杂度和较小的常数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massive memory organizations for implementing neural networks
A single-input multiple-data architecture which has n processing elements and n/sup 2/ memory modules arranged in an n*n array is presented. This massive memory is used to store the weights of the neural network being simulated. It is shown how networks with sparse connectivity among neurons can be simulated in O( square root n+e) time. where n is the number of neurons and e the number of interconnections in the network. Preprocessing is carried out on the connection matrix of the sparse network resulting in data movement that has an optimal asymptotic time complexity and a small constant factor.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信