{"title":"线性离散系统的自适应控制","authors":"Fu-Chuang Chen, Wen-Chung Tsao","doi":"10.1109/ACC.1994.751869","DOIUrl":null,"url":null,"abstract":"The adaptive control of feedback linearizable discrete-time systems is studied. The nonlinearities in the system are linear combinations of known nonlinear functions. Although the unknown parameters appear linearly, the convergence result obtained is not global. The maximum allowable parameter error depends on the system characteristics and on the initial system states. Simulations show that the system diverges when the initial parameter error is too large.","PeriodicalId":147838,"journal":{"name":"Proceedings of 1994 American Control Conference - ACC '94","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptive control of linearizable discrete-time systems\",\"authors\":\"Fu-Chuang Chen, Wen-Chung Tsao\",\"doi\":\"10.1109/ACC.1994.751869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptive control of feedback linearizable discrete-time systems is studied. The nonlinearities in the system are linear combinations of known nonlinear functions. Although the unknown parameters appear linearly, the convergence result obtained is not global. The maximum allowable parameter error depends on the system characteristics and on the initial system states. Simulations show that the system diverges when the initial parameter error is too large.\",\"PeriodicalId\":147838,\"journal\":{\"name\":\"Proceedings of 1994 American Control Conference - ACC '94\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 American Control Conference - ACC '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1994.751869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 American Control Conference - ACC '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1994.751869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive control of linearizable discrete-time systems
The adaptive control of feedback linearizable discrete-time systems is studied. The nonlinearities in the system are linear combinations of known nonlinear functions. Although the unknown parameters appear linearly, the convergence result obtained is not global. The maximum allowable parameter error depends on the system characteristics and on the initial system states. Simulations show that the system diverges when the initial parameter error is too large.