分词器与分块器相结合的中文分词方法

Masayuki Asahara, Chooi-Ling Goh, Xiaojie Wang, Yuji Matsumoto
{"title":"分词器与分块器相结合的中文分词方法","authors":"Masayuki Asahara, Chooi-Ling Goh, Xiaojie Wang, Yuji Matsumoto","doi":"10.3115/1119250.1119270","DOIUrl":null,"url":null,"abstract":"Our proposed method is to use a Hidden Markov Model-based word segmenter and a Support Vector Machine-based chunker for Chinese word segmentation. Firstly, input sentences are analyzed by the Hidden Markov Model-based word segmenter. The word segmenter produces n-best word candidates together with some class information and confidence measures. Secondly, the extracted words are broken into character units and each character is annotated with the possible word class and the position in the word, which are then used as the features for the chunker. Finally, the Support Vector Machine-based chunker brings character units together into words so as to determine the word boundaries.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Combining Segmenter and Chunker for Chinese Word Segmentation\",\"authors\":\"Masayuki Asahara, Chooi-Ling Goh, Xiaojie Wang, Yuji Matsumoto\",\"doi\":\"10.3115/1119250.1119270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our proposed method is to use a Hidden Markov Model-based word segmenter and a Support Vector Machine-based chunker for Chinese word segmentation. Firstly, input sentences are analyzed by the Hidden Markov Model-based word segmenter. The word segmenter produces n-best word candidates together with some class information and confidence measures. Secondly, the extracted words are broken into character units and each character is annotated with the possible word class and the position in the word, which are then used as the features for the chunker. Finally, the Support Vector Machine-based chunker brings character units together into words so as to determine the word boundaries.\",\"PeriodicalId\":403123,\"journal\":{\"name\":\"Workshop on Chinese Language Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Chinese Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1119250.1119270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出的方法是使用基于隐马尔可夫模型的分词器和基于支持向量机的分词器进行中文分词。首先,使用基于隐马尔可夫模型的分词器对输入句子进行分析。分词器产生n个最佳候选词以及一些类信息和置信度度量。其次,将提取的单词分解为字符单元,并对每个字符进行注释,并标注可能的词类和在单词中的位置,然后将其用作分块器的特征。最后,基于支持向量机的分块器将字符单元组合成单词,从而确定单词边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Segmenter and Chunker for Chinese Word Segmentation
Our proposed method is to use a Hidden Markov Model-based word segmenter and a Support Vector Machine-based chunker for Chinese word segmentation. Firstly, input sentences are analyzed by the Hidden Markov Model-based word segmenter. The word segmenter produces n-best word candidates together with some class information and confidence measures. Secondly, the extracted words are broken into character units and each character is annotated with the possible word class and the position in the word, which are then used as the features for the chunker. Finally, the Support Vector Machine-based chunker brings character units together into words so as to determine the word boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信