高能量密度激光与行星和天体物理物质的相互作用:方法和数据

J. Remo, R. G. Adams
{"title":"高能量密度激光与行星和天体物理物质的相互作用:方法和数据","authors":"J. Remo, R. G. Adams","doi":"10.1117/12.782492","DOIUrl":null,"url":null,"abstract":"Sandia National Laboratories NLS (1064 nm) and Z-Beamlet (527 nm) pulsed lasers @ ~ 100 GW/cm2 and 10 TW/cm2 were used to attain pressures at 20 - 525 GPa on a variety of metallic and mineral targets. A simple, inexpensive and innovative electro-optical real-time methodology monitored rear surface mechanical deformation and associated particle and shock wave velocities that differ considerably between metals and non-metals. A reference calibration metal (Aluminum) and a reference non-metal (graphite) were used to demonstrate the validity of this methodology. Normative equations of state and momentum coupling coefficients were obtained for dunite, carbonaceous meteorites, graphite, iron and nickel. These experimental results on inhomogeneous materials can be applied to a variety of high energy density interactions involving stellar and planetary material formation, dynamic interactions, geophysical models, space propulsion systems, orbital debris, materials processing, near-earth space (lunar and asteroid) resource recovery, and near-earth object mitigation models.","PeriodicalId":249315,"journal":{"name":"High-Power Laser Ablation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High energy density laser interactions with planetary and astrophysical materials: methodology and data\",\"authors\":\"J. Remo, R. G. Adams\",\"doi\":\"10.1117/12.782492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sandia National Laboratories NLS (1064 nm) and Z-Beamlet (527 nm) pulsed lasers @ ~ 100 GW/cm2 and 10 TW/cm2 were used to attain pressures at 20 - 525 GPa on a variety of metallic and mineral targets. A simple, inexpensive and innovative electro-optical real-time methodology monitored rear surface mechanical deformation and associated particle and shock wave velocities that differ considerably between metals and non-metals. A reference calibration metal (Aluminum) and a reference non-metal (graphite) were used to demonstrate the validity of this methodology. Normative equations of state and momentum coupling coefficients were obtained for dunite, carbonaceous meteorites, graphite, iron and nickel. These experimental results on inhomogeneous materials can be applied to a variety of high energy density interactions involving stellar and planetary material formation, dynamic interactions, geophysical models, space propulsion systems, orbital debris, materials processing, near-earth space (lunar and asteroid) resource recovery, and near-earth object mitigation models.\",\"PeriodicalId\":249315,\"journal\":{\"name\":\"High-Power Laser Ablation\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Power Laser Ablation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.782492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Power Laser Ablation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.782492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

使用桑dia国家实验室NLS (1064 nm)和Z-Beamlet (527 nm)脉冲激光器@ ~ 100 GW/cm2和10 TW/cm2,在各种金属和矿物目标上获得20 - 525 GPa的压力。一种简单、廉价和创新的光电实时方法监测金属和非金属之间存在很大差异的后表面机械变形以及相关的粒子和冲击波速度。参考校准金属(铝)和参考非金属(石墨)被用来证明该方法的有效性。得到了褐铁矿、碳质陨石、石墨、铁和镍的状态和动量耦合系数的规范方程。这些非均匀材料的实验结果可应用于各种高能量密度相互作用,包括恒星和行星物质形成、动态相互作用、地球物理模型、空间推进系统、轨道碎片、材料处理、近地空间(月球和小行星)资源回收和近地物体减缓模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High energy density laser interactions with planetary and astrophysical materials: methodology and data
Sandia National Laboratories NLS (1064 nm) and Z-Beamlet (527 nm) pulsed lasers @ ~ 100 GW/cm2 and 10 TW/cm2 were used to attain pressures at 20 - 525 GPa on a variety of metallic and mineral targets. A simple, inexpensive and innovative electro-optical real-time methodology monitored rear surface mechanical deformation and associated particle and shock wave velocities that differ considerably between metals and non-metals. A reference calibration metal (Aluminum) and a reference non-metal (graphite) were used to demonstrate the validity of this methodology. Normative equations of state and momentum coupling coefficients were obtained for dunite, carbonaceous meteorites, graphite, iron and nickel. These experimental results on inhomogeneous materials can be applied to a variety of high energy density interactions involving stellar and planetary material formation, dynamic interactions, geophysical models, space propulsion systems, orbital debris, materials processing, near-earth space (lunar and asteroid) resource recovery, and near-earth object mitigation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信