并购:用人工智能增强罗兰传播技术

F. D. Mackenzie, F. Coyne
{"title":"并购:用人工智能增强罗兰传播技术","authors":"F. D. Mackenzie, F. Coyne","doi":"10.1109/PLANS.1992.185823","DOIUrl":null,"url":null,"abstract":"In November 1993 NFOLDS's (National Field Office for Loran Data Support) work-but not its expert staff-will move to the Federal Aviation Administration in Oklahoma City. To recreate NFOLDS's skills in detecting data anomalies, a merger of artificial intelligence and propagation technology has been designed into the system. The authors describe the use of a neural network acting on Loran data to classify anomalies. They also describe an expert system for Loran area monitors to aid operators in managing data collection. It is concluded that the use of artificial intelligence will preserve the quality of Loran data and enhance its value to the scientific community.<<ETX>>","PeriodicalId":422101,"journal":{"name":"IEEE PLANS 92 Position Location and Navigation Symposium Record","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Merger and acquisition: enhancing Loran propagation technology with artificial intelligence\",\"authors\":\"F. D. Mackenzie, F. Coyne\",\"doi\":\"10.1109/PLANS.1992.185823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In November 1993 NFOLDS's (National Field Office for Loran Data Support) work-but not its expert staff-will move to the Federal Aviation Administration in Oklahoma City. To recreate NFOLDS's skills in detecting data anomalies, a merger of artificial intelligence and propagation technology has been designed into the system. The authors describe the use of a neural network acting on Loran data to classify anomalies. They also describe an expert system for Loran area monitors to aid operators in managing data collection. It is concluded that the use of artificial intelligence will preserve the quality of Loran data and enhance its value to the scientific community.<<ETX>>\",\"PeriodicalId\":422101,\"journal\":{\"name\":\"IEEE PLANS 92 Position Location and Navigation Symposium Record\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PLANS 92 Position Location and Navigation Symposium Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.1992.185823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PLANS 92 Position Location and Navigation Symposium Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.1992.185823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1993年11月,国家罗兰数据支持办公室(NFOLDS)的工作——但不是其专家人员——将转移到俄克拉荷马城的联邦航空管理局。为了重现NFOLDS在检测数据异常方面的技能,系统中融合了人工智能和传播技术。作者描述了使用作用于Loran数据的神经网络对异常进行分类。他们还描述了Loran地区监视器的专家系统,以帮助操作员管理数据收集。结论是,人工智能的使用将保持罗兰数据的质量,并提高其对科学界的价值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Merger and acquisition: enhancing Loran propagation technology with artificial intelligence
In November 1993 NFOLDS's (National Field Office for Loran Data Support) work-but not its expert staff-will move to the Federal Aviation Administration in Oklahoma City. To recreate NFOLDS's skills in detecting data anomalies, a merger of artificial intelligence and propagation technology has been designed into the system. The authors describe the use of a neural network acting on Loran data to classify anomalies. They also describe an expert system for Loran area monitors to aid operators in managing data collection. It is concluded that the use of artificial intelligence will preserve the quality of Loran data and enhance its value to the scientific community.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信