Tjasa Boh, J. Billingsley, R. Bradbeer, P. Hodgson
{"title":"基于地形力学的水下轮式机器人牵引力控制","authors":"Tjasa Boh, J. Billingsley, R. Bradbeer, P. Hodgson","doi":"10.1109/OCEANSSYD.2010.5603859","DOIUrl":null,"url":null,"abstract":"The Bekker Theory of Locomotion has long been the leading applied theory when it comes to calculating and predicting soil-tyre interaction for terrestrial wheeled and tracked vehicles. Whilst the theory is applicable for terrestrial systems, there is no evidence to suggest it also applies under water. Furthermore, the complications of measuring the required soil parameters in marine substratum makes it difficult to apply. This paper explores the slip-based approach to the Bekker theorem and suggests an experiment designed to validate this theorem for underwater applications.","PeriodicalId":129808,"journal":{"name":"OCEANS'10 IEEE SYDNEY","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Terramechanics based traction control of underwater wheeled robot\",\"authors\":\"Tjasa Boh, J. Billingsley, R. Bradbeer, P. Hodgson\",\"doi\":\"10.1109/OCEANSSYD.2010.5603859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bekker Theory of Locomotion has long been the leading applied theory when it comes to calculating and predicting soil-tyre interaction for terrestrial wheeled and tracked vehicles. Whilst the theory is applicable for terrestrial systems, there is no evidence to suggest it also applies under water. Furthermore, the complications of measuring the required soil parameters in marine substratum makes it difficult to apply. This paper explores the slip-based approach to the Bekker theorem and suggests an experiment designed to validate this theorem for underwater applications.\",\"PeriodicalId\":129808,\"journal\":{\"name\":\"OCEANS'10 IEEE SYDNEY\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS'10 IEEE SYDNEY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSSYD.2010.5603859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS'10 IEEE SYDNEY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSSYD.2010.5603859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terramechanics based traction control of underwater wheeled robot
The Bekker Theory of Locomotion has long been the leading applied theory when it comes to calculating and predicting soil-tyre interaction for terrestrial wheeled and tracked vehicles. Whilst the theory is applicable for terrestrial systems, there is no evidence to suggest it also applies under water. Furthermore, the complications of measuring the required soil parameters in marine substratum makes it difficult to apply. This paper explores the slip-based approach to the Bekker theorem and suggests an experiment designed to validate this theorem for underwater applications.