Ganglong Duan, Long Wei, Jianren Wang, Hongqi Wang
{"title":"视觉分类的自适应加权多元素协同表示","authors":"Ganglong Duan, Long Wei, Jianren Wang, Hongqi Wang","doi":"10.1109/ICICS.2013.6782782","DOIUrl":null,"url":null,"abstract":"Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present an adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification\",\"authors\":\"Ganglong Duan, Long Wei, Jianren Wang, Hongqi Wang\",\"doi\":\"10.1109/ICICS.2013.6782782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present an adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.\",\"PeriodicalId\":184544,\"journal\":{\"name\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2013.6782782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification
Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present an adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.