基于综合学习粒子群算法的TSK结构识别及其在OFDM接收机非线性信道均衡中的应用

Seemanti Saha, S. S. Pathak, S. Chakrabarti
{"title":"基于综合学习粒子群算法的TSK结构识别及其在OFDM接收机非线性信道均衡中的应用","authors":"Seemanti Saha, S. S. Pathak, S. Chakrabarti","doi":"10.1109/NCC.2011.5734745","DOIUrl":null,"url":null,"abstract":"This paper presents a first order Takagi-Sugeno-Kang (TSK) type fuzzy equalizer to mitigate nonlinear power amplifier distortion effects from the received signal in orthogonal frequency division multiplexing (OFDM) systems. Here we propose a Comprehensive Learning Particle Swarm Optimizer (CLPSO) [1] based structure identification of the TSK equalizer. CLPSO uses a new learning strategy that achieves the goal to accelerate the convergence of the classical particle swarm optimization (PSO) to the global optimal values. Unlike gradient based techniques CLPSO has the capability to escape from the traps of local optima while obtaining the values of nonlinear premise parameters of TSK equalizer. In this work, proposed equalization technique reduces the adverse nonlinear distortion effects at receiver in a Rayleigh faded OFDM communication system and a significant improvement in bit error rate (BER) performance is achieved. Computer Simulations show improved bit error rate (BER) and mean square error (MSE) performances of this novel PSO based TSK equalization in OFDM receiver compared to the latest power amplifier nonlinearity cancellation (PANC) technique [2].","PeriodicalId":158295,"journal":{"name":"2011 National Conference on Communications (NCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comprehensive Learning Particle Swarm Optimization based TSK structure identification and its application in OFDM receiver for nonlinear channel equalization\",\"authors\":\"Seemanti Saha, S. S. Pathak, S. Chakrabarti\",\"doi\":\"10.1109/NCC.2011.5734745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a first order Takagi-Sugeno-Kang (TSK) type fuzzy equalizer to mitigate nonlinear power amplifier distortion effects from the received signal in orthogonal frequency division multiplexing (OFDM) systems. Here we propose a Comprehensive Learning Particle Swarm Optimizer (CLPSO) [1] based structure identification of the TSK equalizer. CLPSO uses a new learning strategy that achieves the goal to accelerate the convergence of the classical particle swarm optimization (PSO) to the global optimal values. Unlike gradient based techniques CLPSO has the capability to escape from the traps of local optima while obtaining the values of nonlinear premise parameters of TSK equalizer. In this work, proposed equalization technique reduces the adverse nonlinear distortion effects at receiver in a Rayleigh faded OFDM communication system and a significant improvement in bit error rate (BER) performance is achieved. Computer Simulations show improved bit error rate (BER) and mean square error (MSE) performances of this novel PSO based TSK equalization in OFDM receiver compared to the latest power amplifier nonlinearity cancellation (PANC) technique [2].\",\"PeriodicalId\":158295,\"journal\":{\"name\":\"2011 National Conference on Communications (NCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2011.5734745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2011.5734745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种一阶Takagi-Sugeno-Kang (TSK)型模糊均衡器,用于减轻正交频分复用(OFDM)系统中接收信号的非线性功率放大器失真效应。本文提出了一种基于综合学习粒子群优化器(CLPSO)[1]的TSK均衡器结构识别方法。CLPSO采用了一种新的学习策略,实现了加速粒子群算法向全局最优收敛的目标。与基于梯度的方法不同,CLPSO在获取TSK均衡器的非线性前提参数值时,能够摆脱局部最优的陷阱。本文提出的均衡技术减少了瑞利衰落OFDM通信系统中接收端非线性失真的不利影响,显著提高了误码率(BER)性能。计算机仿真表明,与最新的功率放大器非线性抵消(PANC)技术相比,这种基于PSO的新型OFDM接收机TSK均衡技术提高了误码率(BER)和均方误差(MSE)性能[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Learning Particle Swarm Optimization based TSK structure identification and its application in OFDM receiver for nonlinear channel equalization
This paper presents a first order Takagi-Sugeno-Kang (TSK) type fuzzy equalizer to mitigate nonlinear power amplifier distortion effects from the received signal in orthogonal frequency division multiplexing (OFDM) systems. Here we propose a Comprehensive Learning Particle Swarm Optimizer (CLPSO) [1] based structure identification of the TSK equalizer. CLPSO uses a new learning strategy that achieves the goal to accelerate the convergence of the classical particle swarm optimization (PSO) to the global optimal values. Unlike gradient based techniques CLPSO has the capability to escape from the traps of local optima while obtaining the values of nonlinear premise parameters of TSK equalizer. In this work, proposed equalization technique reduces the adverse nonlinear distortion effects at receiver in a Rayleigh faded OFDM communication system and a significant improvement in bit error rate (BER) performance is achieved. Computer Simulations show improved bit error rate (BER) and mean square error (MSE) performances of this novel PSO based TSK equalization in OFDM receiver compared to the latest power amplifier nonlinearity cancellation (PANC) technique [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信