动态流量负载下无人机辅助5G网络优化覆盖

Iftikhar Ahmad, Jaspreet Kaur, H. Abbas, Q. Abbasi, A. Zoha, Muhammad Ali Imran, S. Hussain
{"title":"动态流量负载下无人机辅助5G网络优化覆盖","authors":"Iftikhar Ahmad, Jaspreet Kaur, H. Abbas, Q. Abbasi, A. Zoha, Muhammad Ali Imran, S. Hussain","doi":"10.1109/AP-S/USNC-URSI47032.2022.9886848","DOIUrl":null,"url":null,"abstract":"Cellular communication researchers and engineers are both interested in the potential use of unmanned aerial vehicles (UAVs) as aerial base stations. In comparison to terrestrial communications or systems based on high-altitude networks, on-demand wireless systems using low-altitude UAVs can be deployed faster, can be reconfigured more easily, and will likely have better communication channels due to short-range line of sight links. The goal of this paper is to evaluate the use of UAVs in next-generation wireless networks, specifically as a flying base station. Ray-tracing simulations are used to simulate the coverage of a UAV-aided base station (UAV-BS) in a scenario with a fixed base station at the University of Glasgow, UK. The results imply that the UAV-BS will be of tremendous benefit to 5G network communication, such as capacity expansion in metropolitan regions, better coverage in rural areas, and network densification.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"UAV-assisted 5G Networks for Optimised Coverage Under Dynamic Traffic Load\",\"authors\":\"Iftikhar Ahmad, Jaspreet Kaur, H. Abbas, Q. Abbasi, A. Zoha, Muhammad Ali Imran, S. Hussain\",\"doi\":\"10.1109/AP-S/USNC-URSI47032.2022.9886848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular communication researchers and engineers are both interested in the potential use of unmanned aerial vehicles (UAVs) as aerial base stations. In comparison to terrestrial communications or systems based on high-altitude networks, on-demand wireless systems using low-altitude UAVs can be deployed faster, can be reconfigured more easily, and will likely have better communication channels due to short-range line of sight links. The goal of this paper is to evaluate the use of UAVs in next-generation wireless networks, specifically as a flying base station. Ray-tracing simulations are used to simulate the coverage of a UAV-aided base station (UAV-BS) in a scenario with a fixed base station at the University of Glasgow, UK. The results imply that the UAV-BS will be of tremendous benefit to 5G network communication, such as capacity expansion in metropolitan regions, better coverage in rural areas, and network densification.\",\"PeriodicalId\":371560,\"journal\":{\"name\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

蜂窝通信研究人员和工程师都对无人机(uav)作为空中基站的潜在用途感兴趣。与地面通信或基于高空网络的系统相比,使用低空无人机的按需无线系统可以更快地部署,可以更容易地重新配置,并且由于短距离视线链接,可能具有更好的通信信道。本文的目标是评估无人机在下一代无线网络中的使用,特别是作为飞行基站。光线追踪模拟用于模拟无人机辅助基站(UAV-BS)在英国格拉斯哥大学固定基站场景中的覆盖范围。结果表明,无人机- bs将为5G网络通信带来巨大好处,例如在大都市地区扩大容量,在农村地区更好地覆盖,以及网络密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAV-assisted 5G Networks for Optimised Coverage Under Dynamic Traffic Load
Cellular communication researchers and engineers are both interested in the potential use of unmanned aerial vehicles (UAVs) as aerial base stations. In comparison to terrestrial communications or systems based on high-altitude networks, on-demand wireless systems using low-altitude UAVs can be deployed faster, can be reconfigured more easily, and will likely have better communication channels due to short-range line of sight links. The goal of this paper is to evaluate the use of UAVs in next-generation wireless networks, specifically as a flying base station. Ray-tracing simulations are used to simulate the coverage of a UAV-aided base station (UAV-BS) in a scenario with a fixed base station at the University of Glasgow, UK. The results imply that the UAV-BS will be of tremendous benefit to 5G network communication, such as capacity expansion in metropolitan regions, better coverage in rural areas, and network densification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信