学习分享:在线社交网络的工程适应性决策支持

Yasmin Rafiq, Luke Dickens, A. Russo, A. Bandara, Mu Yang, Avelie Stuart, M. Levine, G. Çalikli, B. Price, B. Nuseibeh
{"title":"学习分享:在线社交网络的工程适应性决策支持","authors":"Yasmin Rafiq, Luke Dickens, A. Russo, A. Bandara, Mu Yang, Avelie Stuart, M. Levine, G. Çalikli, B. Price, B. Nuseibeh","doi":"10.1109/ASE.2017.8115641","DOIUrl":null,"url":null,"abstract":"Some online social networks (OSNs) allow users to define friendship-groups as reusable shortcuts for sharing information with multiple contacts. Posting exclusively to a friendship-group gives some privacy control, while supporting communication with (and within) this group. However, recipients of such posts may want to reuse content for their own social advantage, and can bypass existing controls by copy-pasting into a new post; this cross-posting poses privacy risks. This paper presents a learning to share approach that enables the incorporation of more nuanced privacy controls into OSNs. Specifically, we propose a reusable, adaptive software architecture that uses rigorous runtime analysis to help OSN users to make informed decisions about suitable audiences for their posts. This is achieved by supporting dynamic formation of recipient-groups that benefit social interactions while reducing privacy risks. We exemplify the use of our approach in the context of Facebook.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning to share: Engineering adaptive decision-support for online social networks\",\"authors\":\"Yasmin Rafiq, Luke Dickens, A. Russo, A. Bandara, Mu Yang, Avelie Stuart, M. Levine, G. Çalikli, B. Price, B. Nuseibeh\",\"doi\":\"10.1109/ASE.2017.8115641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some online social networks (OSNs) allow users to define friendship-groups as reusable shortcuts for sharing information with multiple contacts. Posting exclusively to a friendship-group gives some privacy control, while supporting communication with (and within) this group. However, recipients of such posts may want to reuse content for their own social advantage, and can bypass existing controls by copy-pasting into a new post; this cross-posting poses privacy risks. This paper presents a learning to share approach that enables the incorporation of more nuanced privacy controls into OSNs. Specifically, we propose a reusable, adaptive software architecture that uses rigorous runtime analysis to help OSN users to make informed decisions about suitable audiences for their posts. This is achieved by supporting dynamic formation of recipient-groups that benefit social interactions while reducing privacy risks. We exemplify the use of our approach in the context of Facebook.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

一些在线社交网络允许用户定义朋友组,作为与多个联系人共享信息的可重用快捷方式。只向一个朋友群发帖可以提供一些隐私控制,同时支持与这个朋友群之间的交流。但是,这些帖子的接收者可能希望重用内容以获得自己的社交优势,并且可以通过复制粘贴到新帖子中来绕过现有的控制;这种交叉发布会带来隐私风险。本文提出了一种学习共享的方法,可以将更细微的隐私控制集成到osn中。具体来说,我们提出了一个可重用的、自适应的软件架构,该架构使用严格的运行时分析来帮助OSN用户做出明智的决定,为他们的帖子选择合适的受众。这是通过支持接受者群体的动态形成来实现的,这有利于社会互动,同时降低了隐私风险。我们以Facebook为例说明了这种方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to share: Engineering adaptive decision-support for online social networks
Some online social networks (OSNs) allow users to define friendship-groups as reusable shortcuts for sharing information with multiple contacts. Posting exclusively to a friendship-group gives some privacy control, while supporting communication with (and within) this group. However, recipients of such posts may want to reuse content for their own social advantage, and can bypass existing controls by copy-pasting into a new post; this cross-posting poses privacy risks. This paper presents a learning to share approach that enables the incorporation of more nuanced privacy controls into OSNs. Specifically, we propose a reusable, adaptive software architecture that uses rigorous runtime analysis to help OSN users to make informed decisions about suitable audiences for their posts. This is achieved by supporting dynamic formation of recipient-groups that benefit social interactions while reducing privacy risks. We exemplify the use of our approach in the context of Facebook.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信