J. Aanstoos, K. Hasan, C. O'Hara, Lalitha Dabbiru, Majid Mahrooghy, R. Nóbrega, Matthew A. Lee
{"title":"利用极化SAR图像检测土坝滑坡","authors":"J. Aanstoos, K. Hasan, C. O'Hara, Lalitha Dabbiru, Majid Mahrooghy, R. Nóbrega, Matthew A. Lee","doi":"10.1109/AIPR.2012.6528207","DOIUrl":null,"url":null,"abstract":"Key results are presented of an extensive project studying the use of synthetic aperture radar (SAR) as an aid to the levee screening process. SAR sensors used are: (1) The NASA UAVSAR (Uninhabited Aerial Vehicle SAR), a fully polarimetric L-band SAR capable of sub-meter ground sample distance; and (2) The German TerraSAR-X radar satellite, also multi-polarized and featuring 1-meter GSD, but using an X-band carrier. The study area is a stretch of 230 km of levees along the lower Mississippi River. The L-band measurements can penetrate vegetation and soil somewhat, thus carrying some information on soil texture and moisture which are relevant features to identifying levee vulnerability to slump slides. While X-band does not penetrate as much, its ready availability via satellite makes multitemporal algorithms practical. Various feature types and classification algorithms were applied to the polarimetry data in the project; this paper reports the results of using the Support Vector Machine (SVM) and back-propagation Artificial Neural Network (ANN) classifiers with a combination of the polarimetric backscatter magnitudes and texture features based on the wavelet transform. Ground reference data used to assess classifier performance is based on soil moisture measurements, soil sample tests, and on site visual inspections.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Detection of slump slides on earthen levees using polarimetric SAR imagery\",\"authors\":\"J. Aanstoos, K. Hasan, C. O'Hara, Lalitha Dabbiru, Majid Mahrooghy, R. Nóbrega, Matthew A. Lee\",\"doi\":\"10.1109/AIPR.2012.6528207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key results are presented of an extensive project studying the use of synthetic aperture radar (SAR) as an aid to the levee screening process. SAR sensors used are: (1) The NASA UAVSAR (Uninhabited Aerial Vehicle SAR), a fully polarimetric L-band SAR capable of sub-meter ground sample distance; and (2) The German TerraSAR-X radar satellite, also multi-polarized and featuring 1-meter GSD, but using an X-band carrier. The study area is a stretch of 230 km of levees along the lower Mississippi River. The L-band measurements can penetrate vegetation and soil somewhat, thus carrying some information on soil texture and moisture which are relevant features to identifying levee vulnerability to slump slides. While X-band does not penetrate as much, its ready availability via satellite makes multitemporal algorithms practical. Various feature types and classification algorithms were applied to the polarimetry data in the project; this paper reports the results of using the Support Vector Machine (SVM) and back-propagation Artificial Neural Network (ANN) classifiers with a combination of the polarimetric backscatter magnitudes and texture features based on the wavelet transform. Ground reference data used to assess classifier performance is based on soil moisture measurements, soil sample tests, and on site visual inspections.\",\"PeriodicalId\":406942,\"journal\":{\"name\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2012.6528207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of slump slides on earthen levees using polarimetric SAR imagery
Key results are presented of an extensive project studying the use of synthetic aperture radar (SAR) as an aid to the levee screening process. SAR sensors used are: (1) The NASA UAVSAR (Uninhabited Aerial Vehicle SAR), a fully polarimetric L-band SAR capable of sub-meter ground sample distance; and (2) The German TerraSAR-X radar satellite, also multi-polarized and featuring 1-meter GSD, but using an X-band carrier. The study area is a stretch of 230 km of levees along the lower Mississippi River. The L-band measurements can penetrate vegetation and soil somewhat, thus carrying some information on soil texture and moisture which are relevant features to identifying levee vulnerability to slump slides. While X-band does not penetrate as much, its ready availability via satellite makes multitemporal algorithms practical. Various feature types and classification algorithms were applied to the polarimetry data in the project; this paper reports the results of using the Support Vector Machine (SVM) and back-propagation Artificial Neural Network (ANN) classifiers with a combination of the polarimetric backscatter magnitudes and texture features based on the wavelet transform. Ground reference data used to assess classifier performance is based on soil moisture measurements, soil sample tests, and on site visual inspections.