具有接近最优性能的计算效率调制检测器

Yun Chen, Christopher Husmann, A. Czylwik
{"title":"具有接近最优性能的计算效率调制检测器","authors":"Yun Chen, Christopher Husmann, A. Czylwik","doi":"10.1109/CCS.2014.6933799","DOIUrl":null,"url":null,"abstract":"Maximum likelihood (ML) based modulation detector provides the optimal performance in the sense that the detection error probability is minimized, if no prior probability of candidate modulations is available at the modulation detector. However, the evaluation of the likelihood function requires prohibitively high computational complexity. This contribution deals with an approximation of the ML detector, which utilizes the special arrangement of square-formed quadrature amplitude modulation (QAM) schemes. Simulation results show that this approximated ML detector is able to provide near-optimal performance with moderate computational complexity.","PeriodicalId":288065,"journal":{"name":"2014 1st International Workshop on Cognitive Cellular Systems (CCS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computationally efficient modulation detector with near optimal performance\",\"authors\":\"Yun Chen, Christopher Husmann, A. Czylwik\",\"doi\":\"10.1109/CCS.2014.6933799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum likelihood (ML) based modulation detector provides the optimal performance in the sense that the detection error probability is minimized, if no prior probability of candidate modulations is available at the modulation detector. However, the evaluation of the likelihood function requires prohibitively high computational complexity. This contribution deals with an approximation of the ML detector, which utilizes the special arrangement of square-formed quadrature amplitude modulation (QAM) schemes. Simulation results show that this approximated ML detector is able to provide near-optimal performance with moderate computational complexity.\",\"PeriodicalId\":288065,\"journal\":{\"name\":\"2014 1st International Workshop on Cognitive Cellular Systems (CCS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 1st International Workshop on Cognitive Cellular Systems (CCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCS.2014.6933799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st International Workshop on Cognitive Cellular Systems (CCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCS.2014.6933799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果调制检测器上没有可用的候选调制的先验概率,则基于最大似然(ML)的调制检测器在检测错误概率最小化的意义上提供了最佳性能。然而,似然函数的求值需要极高的计算复杂度。这一贡献涉及ML检测器的近似,它利用方形正交调幅(QAM)方案的特殊安排。仿真结果表明,这种近似的机器学习检测器能够在适度的计算复杂度下提供接近最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computationally efficient modulation detector with near optimal performance
Maximum likelihood (ML) based modulation detector provides the optimal performance in the sense that the detection error probability is minimized, if no prior probability of candidate modulations is available at the modulation detector. However, the evaluation of the likelihood function requires prohibitively high computational complexity. This contribution deals with an approximation of the ML detector, which utilizes the special arrangement of square-formed quadrature amplitude modulation (QAM) schemes. Simulation results show that this approximated ML detector is able to provide near-optimal performance with moderate computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信