具有有效验证的广义同态mac

L. Zhang, R. Safavi-Naini
{"title":"具有有效验证的广义同态mac","authors":"L. Zhang, R. Safavi-Naini","doi":"10.1145/2600694.2600697","DOIUrl":null,"url":null,"abstract":"Homomorphic MACs allow the holder of a secret key to construct authenticators for data blocks such that an untrusted server that computes a function of the data, can also compute an authenticator that can be verified by the key holder, guaranteeing correctness of the computation. Homomorphic MACs that allow verifiable computation of multivariate polynomials of degree ≤ 2 have been proposed by Backes, Fiore and Reischuk (CCS 2013). We generalize their construction such that polynomials of degree l>2 can also be computed. Our generalization uses multilinear map abstraction and has security based on the l-linear assumption.","PeriodicalId":359137,"journal":{"name":"ASIAPKC '14","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generalized homomorphic MACs with efficient verification\",\"authors\":\"L. Zhang, R. Safavi-Naini\",\"doi\":\"10.1145/2600694.2600697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homomorphic MACs allow the holder of a secret key to construct authenticators for data blocks such that an untrusted server that computes a function of the data, can also compute an authenticator that can be verified by the key holder, guaranteeing correctness of the computation. Homomorphic MACs that allow verifiable computation of multivariate polynomials of degree ≤ 2 have been proposed by Backes, Fiore and Reischuk (CCS 2013). We generalize their construction such that polynomials of degree l>2 can also be computed. Our generalization uses multilinear map abstraction and has security based on the l-linear assumption.\",\"PeriodicalId\":359137,\"journal\":{\"name\":\"ASIAPKC '14\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASIAPKC '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2600694.2600697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASIAPKC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600694.2600697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

同态mac允许密钥的持有者为数据块构造身份验证器,这样计算数据函数的不受信任的服务器也可以计算出可以由密钥持有者验证的身份验证器,从而保证计算的正确性。Backes, Fiore和Reischuk (CCS 2013)提出了允许对次≤2的多元多项式进行可验证计算的同态mac。我们推广了它们的构造,使得阶数1 >2的多项式也可以计算。我们的推广采用了多线性映射抽象,并基于l-线性假设具有安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized homomorphic MACs with efficient verification
Homomorphic MACs allow the holder of a secret key to construct authenticators for data blocks such that an untrusted server that computes a function of the data, can also compute an authenticator that can be verified by the key holder, guaranteeing correctness of the computation. Homomorphic MACs that allow verifiable computation of multivariate polynomials of degree ≤ 2 have been proposed by Backes, Fiore and Reischuk (CCS 2013). We generalize their construction such that polynomials of degree l>2 can also be computed. Our generalization uses multilinear map abstraction and has security based on the l-linear assumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信