基于实际生产的纱线质量预测

Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu
{"title":"基于实际生产的纱线质量预测","authors":"Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu","doi":"10.53106/160792642023072404005","DOIUrl":null,"url":null,"abstract":"\n In recent decades, the neural network approach to predicting yarn quality indicators has been recognized for its high accuracy. Although using neural networks to predict yarn quality indicators has a high accuracy advantage, its relationship understanding between each input parameter and yarn quality indicators may need to be corrected, i.e., increasing the raw cotton strength, the final yarn strength remains the same or decreases. Although this is normal for prediction algorithms, actual production need is more of a trend for individual parameter changes to predict a correct yarn, i.e., raw cotton strength increase should correspond to yarn strength increase. This study proposes a yarn quality prediction method based on actual production by combining nearest neighbor, particle swarm optimization, and expert experience to address the problem. We Use expert experience to determine the upper and lower limits of parameter weights, the particle swarm optimization finds the optimal weights, and then the nearest neighbor algorithm is used to calculate the predicted values of yarn indexes. Finally, the current problems and the rationality of the method proposed in this paper are verified by experiments.\n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Yarn Quality Based on Actual Production\",\"authors\":\"Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu\",\"doi\":\"10.53106/160792642023072404005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In recent decades, the neural network approach to predicting yarn quality indicators has been recognized for its high accuracy. Although using neural networks to predict yarn quality indicators has a high accuracy advantage, its relationship understanding between each input parameter and yarn quality indicators may need to be corrected, i.e., increasing the raw cotton strength, the final yarn strength remains the same or decreases. Although this is normal for prediction algorithms, actual production need is more of a trend for individual parameter changes to predict a correct yarn, i.e., raw cotton strength increase should correspond to yarn strength increase. This study proposes a yarn quality prediction method based on actual production by combining nearest neighbor, particle swarm optimization, and expert experience to address the problem. We Use expert experience to determine the upper and lower limits of parameter weights, the particle swarm optimization finds the optimal weights, and then the nearest neighbor algorithm is used to calculate the predicted values of yarn indexes. Finally, the current problems and the rationality of the method proposed in this paper are verified by experiments.\\n \\n\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023072404005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023072404005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,神经网络预测纱线质量指标的方法以其较高的准确性得到了人们的认可。虽然使用神经网络预测纱线质量指标具有精度高的优势,但其对各个输入参数与纱线质量指标之间关系的理解可能需要修正,即增加原棉强度,最终纱线强度保持不变或降低。虽然这对于预测算法来说是正常的,但实际生产需要更多的是单个参数变化的趋势,以预测正确的纱线,即原棉强度的增加应对应于纱线强度的增加。本文提出了一种结合最近邻、粒子群优化和专家经验的基于实际生产的纱线质量预测方法。利用专家经验确定参数权值的上下限,利用粒子群算法找到最优权值,然后利用最近邻算法计算纱线指标的预测值。最后,通过实验验证了目前存在的问题以及本文提出的方法的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Yarn Quality Based on Actual Production
In recent decades, the neural network approach to predicting yarn quality indicators has been recognized for its high accuracy. Although using neural networks to predict yarn quality indicators has a high accuracy advantage, its relationship understanding between each input parameter and yarn quality indicators may need to be corrected, i.e., increasing the raw cotton strength, the final yarn strength remains the same or decreases. Although this is normal for prediction algorithms, actual production need is more of a trend for individual parameter changes to predict a correct yarn, i.e., raw cotton strength increase should correspond to yarn strength increase. This study proposes a yarn quality prediction method based on actual production by combining nearest neighbor, particle swarm optimization, and expert experience to address the problem. We Use expert experience to determine the upper and lower limits of parameter weights, the particle swarm optimization finds the optimal weights, and then the nearest neighbor algorithm is used to calculate the predicted values of yarn indexes. Finally, the current problems and the rationality of the method proposed in this paper are verified by experiments.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信