子集选择的动态抽样策略

Gongbo Zhang, Yijie Peng, Jianghua Zhang, Enlu Zhou
{"title":"子集选择的动态抽样策略","authors":"Gongbo Zhang, Yijie Peng, Jianghua Zhang, Enlu Zhou","doi":"10.1109/WSC52266.2021.9715357","DOIUrl":null,"url":null,"abstract":"We consider a problem of selecting a subset of a finite number of competing alternatives via Monte Carlo simulation, where the subset contains the top-m alternatives. Under the Bayesian framework, we develop a dynamic sampling policy to efficiently learn and select the top-m alternatives. The proposed sampling policy is proved to be consistent, i.e., the selected alternatives will be the true top-m alternatives as the number of simulation budget goes to infinity. Numerical results show that the proposed sampling policy outperforms the existing ones.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Sampling Policy For Subset Selection\",\"authors\":\"Gongbo Zhang, Yijie Peng, Jianghua Zhang, Enlu Zhou\",\"doi\":\"10.1109/WSC52266.2021.9715357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a problem of selecting a subset of a finite number of competing alternatives via Monte Carlo simulation, where the subset contains the top-m alternatives. Under the Bayesian framework, we develop a dynamic sampling policy to efficiently learn and select the top-m alternatives. The proposed sampling policy is proved to be consistent, i.e., the selected alternatives will be the true top-m alternatives as the number of simulation budget goes to infinity. Numerical results show that the proposed sampling policy outperforms the existing ones.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC52266.2021.9715357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了一个通过蒙特卡罗模拟选择有限个竞争方案的子集的问题,其中子集包含最上面的m个方案。在贝叶斯框架下,我们开发了一种动态采样策略来有效地学习和选择top-m备选方案。证明了所提出的采样策略是一致的,即当模拟预算的数量趋于无穷时,所选择的备选方案将是真正的top-m备选方案。数值结果表明,所提出的采样策略优于现有的采样策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Sampling Policy For Subset Selection
We consider a problem of selecting a subset of a finite number of competing alternatives via Monte Carlo simulation, where the subset contains the top-m alternatives. Under the Bayesian framework, we develop a dynamic sampling policy to efficiently learn and select the top-m alternatives. The proposed sampling policy is proved to be consistent, i.e., the selected alternatives will be the true top-m alternatives as the number of simulation budget goes to infinity. Numerical results show that the proposed sampling policy outperforms the existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信