{"title":"基于脑电图的脑机接口应用的优化卷积神经网络","authors":"Avinash Kumar Singh, Xian Tao","doi":"10.1109/SSCI47803.2020.9308292","DOIUrl":null,"url":null,"abstract":"EEG based brain-computer interface (BCI) allows people to communicate and control external devices using brain signals. The application of BCI ranges from assisting in disabilities to interaction in a virtual reality environment by detecting user intent from EEG signals. The major problem lies in correctly classifying the EEG signals to issue a command with minimal requirement of pre-processing and resources. To overcome these problems, we have proposed, BCINet, a novel optimized convolution neural network model. We have evaluated the BCINet over two EEG based BCI datasets collected in mobile brain/body imaging (MoBI) settings. BCINet significantly outperforms the classification for two datasets with up to 20% increase in accuracy while fewer than 75% trainable parameters. Such a model with improved performance while less requirement of computation resources opens the possibilities for the development of several real-world BCI applications with high performance.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BCINet: An Optimized Convolutional Neural Network for EEG-Based Brain-Computer Interface Applications\",\"authors\":\"Avinash Kumar Singh, Xian Tao\",\"doi\":\"10.1109/SSCI47803.2020.9308292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EEG based brain-computer interface (BCI) allows people to communicate and control external devices using brain signals. The application of BCI ranges from assisting in disabilities to interaction in a virtual reality environment by detecting user intent from EEG signals. The major problem lies in correctly classifying the EEG signals to issue a command with minimal requirement of pre-processing and resources. To overcome these problems, we have proposed, BCINet, a novel optimized convolution neural network model. We have evaluated the BCINet over two EEG based BCI datasets collected in mobile brain/body imaging (MoBI) settings. BCINet significantly outperforms the classification for two datasets with up to 20% increase in accuracy while fewer than 75% trainable parameters. Such a model with improved performance while less requirement of computation resources opens the possibilities for the development of several real-world BCI applications with high performance.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BCINet: An Optimized Convolutional Neural Network for EEG-Based Brain-Computer Interface Applications
EEG based brain-computer interface (BCI) allows people to communicate and control external devices using brain signals. The application of BCI ranges from assisting in disabilities to interaction in a virtual reality environment by detecting user intent from EEG signals. The major problem lies in correctly classifying the EEG signals to issue a command with minimal requirement of pre-processing and resources. To overcome these problems, we have proposed, BCINet, a novel optimized convolution neural network model. We have evaluated the BCINet over two EEG based BCI datasets collected in mobile brain/body imaging (MoBI) settings. BCINet significantly outperforms the classification for two datasets with up to 20% increase in accuracy while fewer than 75% trainable parameters. Such a model with improved performance while less requirement of computation resources opens the possibilities for the development of several real-world BCI applications with high performance.