通用尺度不变元胞自动机

P. Arrighi, Marin Costes, Nathanael Eon
{"title":"通用尺度不变元胞自动机","authors":"P. Arrighi, Marin Costes, Nathanael Eon","doi":"10.4230/LIPIcs.MFCS.2021.9","DOIUrl":null,"url":null,"abstract":"Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification for the fundamental forces. Usually, one starts from a non-interactive theory which governs `matter', and features a global symmetry. One then extends the theory so as make the global symmetry into a local one (a.k.a gauge-invariance). We formalise a discrete counterpart of this process, known as gauge extension, within the Computer Science framework of Cellular Automata (CA). We prove that the CA which admit a relative gauge extension are exactly the globally symmetric ones (a.k.a the colour-blind). We prove that any CA admits a non-relative gauge extension. Both constructions yield universal gauge-invariant CA, but the latter allows for a first example where the gauge extension mediates interactions within the initial CA.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Universal gauge-invariant cellular automata\",\"authors\":\"P. Arrighi, Marin Costes, Nathanael Eon\",\"doi\":\"10.4230/LIPIcs.MFCS.2021.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification for the fundamental forces. Usually, one starts from a non-interactive theory which governs `matter', and features a global symmetry. One then extends the theory so as make the global symmetry into a local one (a.k.a gauge-invariance). We formalise a discrete counterpart of this process, known as gauge extension, within the Computer Science framework of Cellular Automata (CA). We prove that the CA which admit a relative gauge extension are exactly the globally symmetric ones (a.k.a the colour-blind). We prove that any CA admits a non-relative gauge extension. Both constructions yield universal gauge-invariant CA, but the latter allows for a first example where the gauge extension mediates interactions within the initial CA.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"287 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2021.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2021.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

规范对称在物理学中扮演着重要的角色,因为它们为基本力提供了数学上的证明。通常,人们从一个控制“物质”的非相互作用理论开始,并以全局对称性为特征。然后扩展理论,使全局对称变成局部对称(又称规范不变性)。我们在元胞自动机(CA)的计算机科学框架内形式化了这一过程的离散对应物,称为规范扩展。我们证明了具有相对规范扩展的CA正是全局对称CA(即色盲CA)。我们证明了任何CA都允许非相对规范扩展。这两种结构都会产生通用的规范不变CA,但后者允许第一个例子,其中规范扩展调解初始CA内的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal gauge-invariant cellular automata
Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification for the fundamental forces. Usually, one starts from a non-interactive theory which governs `matter', and features a global symmetry. One then extends the theory so as make the global symmetry into a local one (a.k.a gauge-invariance). We formalise a discrete counterpart of this process, known as gauge extension, within the Computer Science framework of Cellular Automata (CA). We prove that the CA which admit a relative gauge extension are exactly the globally symmetric ones (a.k.a the colour-blind). We prove that any CA admits a non-relative gauge extension. Both constructions yield universal gauge-invariant CA, but the latter allows for a first example where the gauge extension mediates interactions within the initial CA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信