分子印迹聚合物(MIP)技术检测肌酐

Teerachote Pitayataratorn, Wannisa Sukjee, C. Sangma, S. Visitsattapongse
{"title":"分子印迹聚合物(MIP)技术检测肌酐","authors":"Teerachote Pitayataratorn, Wannisa Sukjee, C. Sangma, S. Visitsattapongse","doi":"10.1109/BMEiCON56653.2022.10011578","DOIUrl":null,"url":null,"abstract":"An electrochemical potentiometric biosensor based on the molecularly imprinted polymer (MIP) technique has been fabricated for creatinine detection. The polymer consists of azobisisobutyronitrile (AIBN) as an initiator together with N, N’(1,2-Dihydroxyethelene) bisacrylamide (DHEBA) as a cross-linker and graphene oxide (GO) was prepared along with several functional monomers combination to compare each combination’s effectiveness in the detection of creatinine. An experiment was divided into imprint and non-imprint polymer for imprinting effectiveness evaluation. Creatinine anhydrous were used as template molecules for imprinting the polymer. The analyte was prepared in buffer solution (PBS) at a pH of 7.4 with a concentration range from 0.01 mg/dl to 100 mg/dl. N-hydroxy succinimide (NHS) and D-glucose were used for the specificity test. This study can conclude that polymers consisting of functional monomer methyl methacrylate (MMA) and acrylamide (AAM) with a 1:1 ratio show significant sensitivity to creatinine with the detection limit of 0.1 mg/dl along with remarkable selectivity to creatinine against other negative control compared to other conditions in this study and the sensor has a response linearly ranges from 0.01 to 100 mg/dl.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Creatinine Using Molecularly Imprinted Polymers (MIP) Technique\",\"authors\":\"Teerachote Pitayataratorn, Wannisa Sukjee, C. Sangma, S. Visitsattapongse\",\"doi\":\"10.1109/BMEiCON56653.2022.10011578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electrochemical potentiometric biosensor based on the molecularly imprinted polymer (MIP) technique has been fabricated for creatinine detection. The polymer consists of azobisisobutyronitrile (AIBN) as an initiator together with N, N’(1,2-Dihydroxyethelene) bisacrylamide (DHEBA) as a cross-linker and graphene oxide (GO) was prepared along with several functional monomers combination to compare each combination’s effectiveness in the detection of creatinine. An experiment was divided into imprint and non-imprint polymer for imprinting effectiveness evaluation. Creatinine anhydrous were used as template molecules for imprinting the polymer. The analyte was prepared in buffer solution (PBS) at a pH of 7.4 with a concentration range from 0.01 mg/dl to 100 mg/dl. N-hydroxy succinimide (NHS) and D-glucose were used for the specificity test. This study can conclude that polymers consisting of functional monomer methyl methacrylate (MMA) and acrylamide (AAM) with a 1:1 ratio show significant sensitivity to creatinine with the detection limit of 0.1 mg/dl along with remarkable selectivity to creatinine against other negative control compared to other conditions in this study and the sensor has a response linearly ranges from 0.01 to 100 mg/dl.\",\"PeriodicalId\":177401,\"journal\":{\"name\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEiCON56653.2022.10011578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10011578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制备了一种基于分子印迹聚合物(MIP)技术的电化学电位生物传感器,用于检测肌酐。该聚合物由偶氮二异丁腈(AIBN)为引发剂,N, N '(1,2-二羟乙烯)双丙烯酰胺(DHEBA)为交联剂,氧化石墨烯(GO)与几种功能单体组合组成,比较了每种组合检测肌酐的有效性。实验分为压印聚合物和非压印聚合物进行压印效果评价。无水肌酐作为模板分子印迹聚合物。在pH为7.4的缓冲溶液(PBS)中制备分析物,浓度范围为0.01 mg/dl至100 mg/dl。特异性试验采用n -羟基琥珀酰亚胺(NHS)和d -葡萄糖。本研究表明,与本研究中其他条件相比,功能单体甲基丙烯酸甲酯(MMA)和丙烯酰胺(AAM)按1:1的比例组成的聚合物对肌酐具有显著的灵敏度,检测限为0.1 mg/dl,对其他阴性对照具有显著的选择性,传感器的响应线性范围为0.01 ~ 100 mg/dl。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Creatinine Using Molecularly Imprinted Polymers (MIP) Technique
An electrochemical potentiometric biosensor based on the molecularly imprinted polymer (MIP) technique has been fabricated for creatinine detection. The polymer consists of azobisisobutyronitrile (AIBN) as an initiator together with N, N’(1,2-Dihydroxyethelene) bisacrylamide (DHEBA) as a cross-linker and graphene oxide (GO) was prepared along with several functional monomers combination to compare each combination’s effectiveness in the detection of creatinine. An experiment was divided into imprint and non-imprint polymer for imprinting effectiveness evaluation. Creatinine anhydrous were used as template molecules for imprinting the polymer. The analyte was prepared in buffer solution (PBS) at a pH of 7.4 with a concentration range from 0.01 mg/dl to 100 mg/dl. N-hydroxy succinimide (NHS) and D-glucose were used for the specificity test. This study can conclude that polymers consisting of functional monomer methyl methacrylate (MMA) and acrylamide (AAM) with a 1:1 ratio show significant sensitivity to creatinine with the detection limit of 0.1 mg/dl along with remarkable selectivity to creatinine against other negative control compared to other conditions in this study and the sensor has a response linearly ranges from 0.01 to 100 mg/dl.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信