离散和随机联合存储对策

Diego Kiedanski, A. Orda, D. Kofman
{"title":"离散和随机联合存储对策","authors":"Diego Kiedanski, A. Orda, D. Kofman","doi":"10.1145/3396851.3397729","DOIUrl":null,"url":null,"abstract":"As of today, energy storage for residential consumers represents a considerable investment that is not guaranteed to be profitable. Shared investment models in which a group of consumers jointly acquires energy storage have been proposed in the literature to increase the attractiveness of these devices. Such models naturally employ concepts of cooperative game theory. In this paper, we extend the state-of-the-art cooperative game for modeling the shared investment in storage by adding two crucial extensions: stochasticity of the load and discreetness of the storage device capacity. As our goal is to increase storage capacity in the grid, the number of devices that would be acquired by a group of players that cooperate according to our proposed scheme is compared to the number of devices that would be bought by consumers acting individually. Under the same criteria of customer profitability, simulations using real data reveal that our proposed scheme can increase the deployed storage capacity between 100% and 250%.","PeriodicalId":442966,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Discrete and stochastic coalitional storage games\",\"authors\":\"Diego Kiedanski, A. Orda, D. Kofman\",\"doi\":\"10.1145/3396851.3397729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As of today, energy storage for residential consumers represents a considerable investment that is not guaranteed to be profitable. Shared investment models in which a group of consumers jointly acquires energy storage have been proposed in the literature to increase the attractiveness of these devices. Such models naturally employ concepts of cooperative game theory. In this paper, we extend the state-of-the-art cooperative game for modeling the shared investment in storage by adding two crucial extensions: stochasticity of the load and discreetness of the storage device capacity. As our goal is to increase storage capacity in the grid, the number of devices that would be acquired by a group of players that cooperate according to our proposed scheme is compared to the number of devices that would be bought by consumers acting individually. Under the same criteria of customer profitability, simulations using real data reveal that our proposed scheme can increase the deployed storage capacity between 100% and 250%.\",\"PeriodicalId\":442966,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Future Energy Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Future Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3396851.3397729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396851.3397729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

到目前为止,住宅用户的储能是一项相当大的投资,不能保证盈利。文献中提出了一组消费者共同购买储能的共享投资模型,以增加这些设备的吸引力。这样的模型自然采用了合作博弈论的概念。在本文中,我们通过增加两个关键的扩展:负载的随机性和存储设备容量的离散性,扩展了最先进的合作博弈来建模共享存储投资。由于我们的目标是增加电网的存储容量,根据我们提出的方案进行合作的一组参与者将获得的设备数量与消费者单独行动将购买的设备数量进行比较。在相同的客户盈利标准下,使用真实数据的仿真表明,我们提出的方案可以将部署的存储容量增加100%到250%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete and stochastic coalitional storage games
As of today, energy storage for residential consumers represents a considerable investment that is not guaranteed to be profitable. Shared investment models in which a group of consumers jointly acquires energy storage have been proposed in the literature to increase the attractiveness of these devices. Such models naturally employ concepts of cooperative game theory. In this paper, we extend the state-of-the-art cooperative game for modeling the shared investment in storage by adding two crucial extensions: stochasticity of the load and discreetness of the storage device capacity. As our goal is to increase storage capacity in the grid, the number of devices that would be acquired by a group of players that cooperate according to our proposed scheme is compared to the number of devices that would be bought by consumers acting individually. Under the same criteria of customer profitability, simulations using real data reveal that our proposed scheme can increase the deployed storage capacity between 100% and 250%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信