{"title":"基于多步并行rns的设备端到端语音识别","authors":"Yoonho Boo, Jinhwan Park, Lukas Lee, Wonyong Sung","doi":"10.1109/SLT.2018.8639662","DOIUrl":null,"url":null,"abstract":"Most of the current automatic speech recognition is performed on a remote server. However, the demand for speech recognition on personal devices is increasing, owing to the requirement of shorter recognition latency and increased privacy. End-to-end speech recognition that employs recurrent neural networks (RNNs) shows good accuracy, but the execution of conventional RNNs, such as the long short-term memory (LSTM) or gated recurrent unit (GRU), demands many memory accesses, thus hindering its real-time execution on smart-phones or embedded systems. To solve this problem, we built an end-to-end acoustic model (AM) using linear recurrent units instead of LSTM or GRU and employed a multi-step parallel approach for reducing the number of DRAM accesses. The AM is trained with the connectionist temporal classification (CTC) loss, and the decoding is conducted using weighted finite-state transducers (WFSTs). The proposed system achieves x4.8 real-time speed when executed on a single core of an ARM CPU-based system.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Device End-to-end Speech Recognition with Multi-Step Parallel Rnns\",\"authors\":\"Yoonho Boo, Jinhwan Park, Lukas Lee, Wonyong Sung\",\"doi\":\"10.1109/SLT.2018.8639662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the current automatic speech recognition is performed on a remote server. However, the demand for speech recognition on personal devices is increasing, owing to the requirement of shorter recognition latency and increased privacy. End-to-end speech recognition that employs recurrent neural networks (RNNs) shows good accuracy, but the execution of conventional RNNs, such as the long short-term memory (LSTM) or gated recurrent unit (GRU), demands many memory accesses, thus hindering its real-time execution on smart-phones or embedded systems. To solve this problem, we built an end-to-end acoustic model (AM) using linear recurrent units instead of LSTM or GRU and employed a multi-step parallel approach for reducing the number of DRAM accesses. The AM is trained with the connectionist temporal classification (CTC) loss, and the decoding is conducted using weighted finite-state transducers (WFSTs). The proposed system achieves x4.8 real-time speed when executed on a single core of an ARM CPU-based system.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-Device End-to-end Speech Recognition with Multi-Step Parallel Rnns
Most of the current automatic speech recognition is performed on a remote server. However, the demand for speech recognition on personal devices is increasing, owing to the requirement of shorter recognition latency and increased privacy. End-to-end speech recognition that employs recurrent neural networks (RNNs) shows good accuracy, but the execution of conventional RNNs, such as the long short-term memory (LSTM) or gated recurrent unit (GRU), demands many memory accesses, thus hindering its real-time execution on smart-phones or embedded systems. To solve this problem, we built an end-to-end acoustic model (AM) using linear recurrent units instead of LSTM or GRU and employed a multi-step parallel approach for reducing the number of DRAM accesses. The AM is trained with the connectionist temporal classification (CTC) loss, and the decoding is conducted using weighted finite-state transducers (WFSTs). The proposed system achieves x4.8 real-time speed when executed on a single core of an ARM CPU-based system.