多维同频存在下基于特征向量的频率估计优化

Jun Liu, Xiangqian Liu
{"title":"多维同频存在下基于特征向量的频率估计优化","authors":"Jun Liu, Xiangqian Liu","doi":"10.1109/SPAWC.2006.346440","DOIUrl":null,"url":null,"abstract":"Recently an eigenvector-based algorithm has been developed for multidimensional frequency estimation. Unlike most existing algebraic approaches that estimate frequencies from eigenvalues, the eigenvector-based algorithm can achieve automatic frequency pairing without joint diagonalization of multiple matrices, but it is not applicable if there exist identical frequencies in certain dimensions. In this paper, we propose to use weighting factors to extend the eigenvector-based algorithm to handle identical frequencies in one or more dimensions. The weighting factors are optimized by minimizing the error variance. Simulation results demonstrate the effectiveness of the proposed approach","PeriodicalId":414942,"journal":{"name":"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimizing Eigenvector-Based Frequency Estimation in the Presence of Identical Frequencies in Multiple Dimensions\",\"authors\":\"Jun Liu, Xiangqian Liu\",\"doi\":\"10.1109/SPAWC.2006.346440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently an eigenvector-based algorithm has been developed for multidimensional frequency estimation. Unlike most existing algebraic approaches that estimate frequencies from eigenvalues, the eigenvector-based algorithm can achieve automatic frequency pairing without joint diagonalization of multiple matrices, but it is not applicable if there exist identical frequencies in certain dimensions. In this paper, we propose to use weighting factors to extend the eigenvector-based algorithm to handle identical frequencies in one or more dimensions. The weighting factors are optimized by minimizing the error variance. Simulation results demonstrate the effectiveness of the proposed approach\",\"PeriodicalId\":414942,\"journal\":{\"name\":\"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2006.346440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2006.346440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,人们提出了一种基于特征向量的多维频率估计算法。与现有的大多数从特征值估计频率的代数方法不同,基于特征向量的算法可以在不需要多个矩阵联合对角化的情况下实现频率的自动配对,但如果在某些维度上存在相同的频率,则不适用。在本文中,我们提出使用加权因子来扩展基于特征向量的算法,以处理一个或多个维度的相同频率。通过最小化误差方差来优化权重因子。仿真结果验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Eigenvector-Based Frequency Estimation in the Presence of Identical Frequencies in Multiple Dimensions
Recently an eigenvector-based algorithm has been developed for multidimensional frequency estimation. Unlike most existing algebraic approaches that estimate frequencies from eigenvalues, the eigenvector-based algorithm can achieve automatic frequency pairing without joint diagonalization of multiple matrices, but it is not applicable if there exist identical frequencies in certain dimensions. In this paper, we propose to use weighting factors to extend the eigenvector-based algorithm to handle identical frequencies in one or more dimensions. The weighting factors are optimized by minimizing the error variance. Simulation results demonstrate the effectiveness of the proposed approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信