Max Bläser, Han Gao, S. Esenlik, E. Alshina, Zhijie Zhao, Christian Rohlfing, E. Steinbach
{"title":"多用途视频编码的低复杂度几何互预测","authors":"Max Bläser, Han Gao, S. Esenlik, E. Alshina, Zhijie Zhao, Christian Rohlfing, E. Steinbach","doi":"10.1109/PCS48520.2019.8954504","DOIUrl":null,"url":null,"abstract":"Non-rectangular block partitioning is a well-known method for improved inter-picture prediction in video coding, enabling better spatial adaptation to the signal properties. This contribution presents the most recent proposal of geometric inter-prediction (GIP) made to the Versatile Video Coding (VVC) standardization activity led by the Joint Video Experts Team (JVET). Implemented in the latest test model VTM-5.0 and evaluated according to the JVET Common Test Conditions, the proposed low-complexity GIP scheme provides objective luma BD-rate reductions of 0.22 % for random access and 0.44 % for low-delay test cases at 7% encoder runtime increase and negligible decoder runtime increase. The coding gain is provided by non-triangular partitioned blocks and in the presence of multiple other VVC coding tools. Furthermore, BD-rate reductions of 2.58 % and 2.78 % can be achieved specifically for pure screen content by employing an adaptive blending filter.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Low-Complexity Geometric Inter-Prediction for Versatile Video Coding\",\"authors\":\"Max Bläser, Han Gao, S. Esenlik, E. Alshina, Zhijie Zhao, Christian Rohlfing, E. Steinbach\",\"doi\":\"10.1109/PCS48520.2019.8954504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-rectangular block partitioning is a well-known method for improved inter-picture prediction in video coding, enabling better spatial adaptation to the signal properties. This contribution presents the most recent proposal of geometric inter-prediction (GIP) made to the Versatile Video Coding (VVC) standardization activity led by the Joint Video Experts Team (JVET). Implemented in the latest test model VTM-5.0 and evaluated according to the JVET Common Test Conditions, the proposed low-complexity GIP scheme provides objective luma BD-rate reductions of 0.22 % for random access and 0.44 % for low-delay test cases at 7% encoder runtime increase and negligible decoder runtime increase. The coding gain is provided by non-triangular partitioned blocks and in the presence of multiple other VVC coding tools. Furthermore, BD-rate reductions of 2.58 % and 2.78 % can be achieved specifically for pure screen content by employing an adaptive blending filter.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Complexity Geometric Inter-Prediction for Versatile Video Coding
Non-rectangular block partitioning is a well-known method for improved inter-picture prediction in video coding, enabling better spatial adaptation to the signal properties. This contribution presents the most recent proposal of geometric inter-prediction (GIP) made to the Versatile Video Coding (VVC) standardization activity led by the Joint Video Experts Team (JVET). Implemented in the latest test model VTM-5.0 and evaluated according to the JVET Common Test Conditions, the proposed low-complexity GIP scheme provides objective luma BD-rate reductions of 0.22 % for random access and 0.44 % for low-delay test cases at 7% encoder runtime increase and negligible decoder runtime increase. The coding gain is provided by non-triangular partitioned blocks and in the presence of multiple other VVC coding tools. Furthermore, BD-rate reductions of 2.58 % and 2.78 % can be achieved specifically for pure screen content by employing an adaptive blending filter.