低渗透挥发性油藏速率暂态分析的解析模型

Le Luo, Shiqing Cheng, John W. Lee
{"title":"低渗透挥发性油藏速率暂态分析的解析模型","authors":"Le Luo, Shiqing Cheng, John W. Lee","doi":"10.2118/195900-ms","DOIUrl":null,"url":null,"abstract":"\n This paper presents a simple yet rigorous analytical solution for two-phase (gas-oil) flow in closed volatile oil reservoirs. The solution includes all flow regimes over the life of a multi-fractured horizontal well, including the usually long-duration early transient flow followed by the transition and the boundary-dominated flow regimes. The solution will be particularly useful in rate transient analysis of production data and production forecasting for horizontal wells with multiple fractures in ultra-low permeability reservoirs, such as shales. We formulated the governing, non-linear partial differential equations (PDEs) for simultaneous gas-oil flow with an inner boundary condition of constant bottom-hole pressure (BHP). We then defined pseudo-variables to transform the non-linear PDEs to linear forms. By developing deterministic models for calculation of fluid properties using multi-regression analysis of PVT data and relative permeability curves, we were able to find analytical solutions by the separation of variables method for specified initial and outer boundary conditions. We obtained a production rate-time relation which can be used to generate type curves or to provide a basis for history matching production data and forecasting future production. Under constant bottom-hole pressure producing condition, the resulting solutions that describe the relationship between dimensionless rate and dimensionless two-phase pseudotime indicate a complicated decline with an exponential relation inside an infinite series. We validated the solutions through comparisons with compositional simulation using commercial software; the satisfactory agreements demonstrated the accuracy and utility of the analytical solutions. Our results indicate that the production performance in multi-phase flow is far different than performance in single-phase flow, and that formation properties interpreted using techniques appropriate for single-phase flow can be seriously in error when applied to two-phase flow situations. Finally, we found that our analytical solution yielded reasonable interpretations of actual field data from the Midland Basin.","PeriodicalId":325107,"journal":{"name":"Day 1 Mon, September 30, 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Model for Rate Transient Analysis in Low-Permeability Volatile Oil Reservoirs\",\"authors\":\"Le Luo, Shiqing Cheng, John W. Lee\",\"doi\":\"10.2118/195900-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a simple yet rigorous analytical solution for two-phase (gas-oil) flow in closed volatile oil reservoirs. The solution includes all flow regimes over the life of a multi-fractured horizontal well, including the usually long-duration early transient flow followed by the transition and the boundary-dominated flow regimes. The solution will be particularly useful in rate transient analysis of production data and production forecasting for horizontal wells with multiple fractures in ultra-low permeability reservoirs, such as shales. We formulated the governing, non-linear partial differential equations (PDEs) for simultaneous gas-oil flow with an inner boundary condition of constant bottom-hole pressure (BHP). We then defined pseudo-variables to transform the non-linear PDEs to linear forms. By developing deterministic models for calculation of fluid properties using multi-regression analysis of PVT data and relative permeability curves, we were able to find analytical solutions by the separation of variables method for specified initial and outer boundary conditions. We obtained a production rate-time relation which can be used to generate type curves or to provide a basis for history matching production data and forecasting future production. Under constant bottom-hole pressure producing condition, the resulting solutions that describe the relationship between dimensionless rate and dimensionless two-phase pseudotime indicate a complicated decline with an exponential relation inside an infinite series. We validated the solutions through comparisons with compositional simulation using commercial software; the satisfactory agreements demonstrated the accuracy and utility of the analytical solutions. Our results indicate that the production performance in multi-phase flow is far different than performance in single-phase flow, and that formation properties interpreted using techniques appropriate for single-phase flow can be seriously in error when applied to two-phase flow situations. Finally, we found that our analytical solution yielded reasonable interpretations of actual field data from the Midland Basin.\",\"PeriodicalId\":325107,\"journal\":{\"name\":\"Day 1 Mon, September 30, 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, September 30, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/195900-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, September 30, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195900-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种简单而严谨的封闭性挥发性油藏两相(气-油)流动的解析解。该解决方案包括多缝水平井生命周期内的所有流动形式,包括通常持续时间较长的早期瞬态流动,随后是过渡和边界主导的流动形式。该解决方案对于超低渗透油藏(如页岩)中多裂缝水平井的产量数据速率瞬态分析和产量预测特别有用。在恒定井底压力(BHP)内边界条件下,建立了油气同时流动的非线性偏微分方程(PDEs)。然后定义伪变量将非线性偏微分方程转化为线性形式。通过对PVT数据和相对渗透率曲线进行多元回归分析,建立流体性质计算的确定性模型,我们能够通过分离变量法找到特定初始和外边界条件下的解析解。得到了产量-时间关系,可用于生成类型曲线或为历史生产数据匹配和预测未来生产提供依据。在一定井底压力条件下,描述无量纲速率与无量纲两相伪时间关系的所得解在无穷级数内表现为复杂的指数递减关系。通过与商用软件合成仿真的对比,验证了解决方案的有效性;令人满意的一致性证明了解析解的准确性和实用性。研究结果表明,多相流条件下的生产动态与单相流条件下的生产动态存在很大差异,适用于单相流条件下的地层性质解释技术在两相流条件下可能存在严重误差。最后,我们发现我们的解析解对Midland盆地的实际现场数据进行了合理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Model for Rate Transient Analysis in Low-Permeability Volatile Oil Reservoirs
This paper presents a simple yet rigorous analytical solution for two-phase (gas-oil) flow in closed volatile oil reservoirs. The solution includes all flow regimes over the life of a multi-fractured horizontal well, including the usually long-duration early transient flow followed by the transition and the boundary-dominated flow regimes. The solution will be particularly useful in rate transient analysis of production data and production forecasting for horizontal wells with multiple fractures in ultra-low permeability reservoirs, such as shales. We formulated the governing, non-linear partial differential equations (PDEs) for simultaneous gas-oil flow with an inner boundary condition of constant bottom-hole pressure (BHP). We then defined pseudo-variables to transform the non-linear PDEs to linear forms. By developing deterministic models for calculation of fluid properties using multi-regression analysis of PVT data and relative permeability curves, we were able to find analytical solutions by the separation of variables method for specified initial and outer boundary conditions. We obtained a production rate-time relation which can be used to generate type curves or to provide a basis for history matching production data and forecasting future production. Under constant bottom-hole pressure producing condition, the resulting solutions that describe the relationship between dimensionless rate and dimensionless two-phase pseudotime indicate a complicated decline with an exponential relation inside an infinite series. We validated the solutions through comparisons with compositional simulation using commercial software; the satisfactory agreements demonstrated the accuracy and utility of the analytical solutions. Our results indicate that the production performance in multi-phase flow is far different than performance in single-phase flow, and that formation properties interpreted using techniques appropriate for single-phase flow can be seriously in error when applied to two-phase flow situations. Finally, we found that our analytical solution yielded reasonable interpretations of actual field data from the Midland Basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信