用于自然图像解释的颜色纹理直方图

J.G. Avia-Cervantes, S. Ledezma-Orozco, M. Torres-Cisneros, D. Hernández-Fusilier, J. González-Barbosa, A. Salazar-Garibay
{"title":"用于自然图像解释的颜色纹理直方图","authors":"J.G. Avia-Cervantes, S. Ledezma-Orozco, M. Torres-Cisneros, D. Hernández-Fusilier, J. González-Barbosa, A. Salazar-Garibay","doi":"10.1109/MICAI.2007.19","DOIUrl":null,"url":null,"abstract":"This paper presents a recognition method for natural images based on color texture histograms in the context of image interpretation and scene modeling. A color histogram of sums and differences is proposed to obtain texture features which are faster to compute than correlograms ( i.e., colored version of co-occurrence matrices) and improving substantially object recognition. Outdoor natural images are generally affected by color casting artifacts which can affect object recognition. Therefore, an on-line color balancing algorithm based on chromatic adaptation models, eliminates these color deviations. The proposed approach globally involves functions as color segmentation, histogram texture analysis and a region recognition step. Our approach has been extensively tested and validated to obtain an accurate 2D scene interpretation from natural images. This technique may be used in robot navigation by identifying navigable regions ( e.g., roads or fairly flat surfaces) on natural scenes, scene modeling and image categorization.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Color Texture Histograms for Natural Images Interpretation\",\"authors\":\"J.G. Avia-Cervantes, S. Ledezma-Orozco, M. Torres-Cisneros, D. Hernández-Fusilier, J. González-Barbosa, A. Salazar-Garibay\",\"doi\":\"10.1109/MICAI.2007.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a recognition method for natural images based on color texture histograms in the context of image interpretation and scene modeling. A color histogram of sums and differences is proposed to obtain texture features which are faster to compute than correlograms ( i.e., colored version of co-occurrence matrices) and improving substantially object recognition. Outdoor natural images are generally affected by color casting artifacts which can affect object recognition. Therefore, an on-line color balancing algorithm based on chromatic adaptation models, eliminates these color deviations. The proposed approach globally involves functions as color segmentation, histogram texture analysis and a region recognition step. Our approach has been extensively tested and validated to obtain an accurate 2D scene interpretation from natural images. This technique may be used in robot navigation by identifying navigable regions ( e.g., roads or fairly flat surfaces) on natural scenes, scene modeling and image categorization.\",\"PeriodicalId\":296192,\"journal\":{\"name\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2007.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在图像解释和场景建模的背景下,提出了一种基于颜色纹理直方图的自然图像识别方法。提出了一种和和差的颜色直方图,以获得比相关图(即共现矩阵的彩色版本)更快计算的纹理特征,并大大提高了对象识别。户外自然图像通常会受到色偏伪影的影响,从而影响物体识别。因此,基于色彩适应模型的在线色彩平衡算法可以消除这些色彩偏差。该方法包括颜色分割、直方图纹理分析和区域识别等功能。我们的方法经过了广泛的测试和验证,可以从自然图像中获得准确的2D场景解释。该技术可以通过在自然场景中识别可导航区域(例如道路或相当平坦的表面)、场景建模和图像分类来用于机器人导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color Texture Histograms for Natural Images Interpretation
This paper presents a recognition method for natural images based on color texture histograms in the context of image interpretation and scene modeling. A color histogram of sums and differences is proposed to obtain texture features which are faster to compute than correlograms ( i.e., colored version of co-occurrence matrices) and improving substantially object recognition. Outdoor natural images are generally affected by color casting artifacts which can affect object recognition. Therefore, an on-line color balancing algorithm based on chromatic adaptation models, eliminates these color deviations. The proposed approach globally involves functions as color segmentation, histogram texture analysis and a region recognition step. Our approach has been extensively tested and validated to obtain an accurate 2D scene interpretation from natural images. This technique may be used in robot navigation by identifying navigable regions ( e.g., roads or fairly flat surfaces) on natural scenes, scene modeling and image categorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信