N. Silva, Thiago Silva, Henrique Hott, Yan Ribeiro, A. Pereira, Leonardo Rocha
{"title":"探索交互式推荐系统中用户偏好的不确定性场景","authors":"N. Silva, Thiago Silva, Henrique Hott, Yan Ribeiro, A. Pereira, Leonardo Rocha","doi":"10.1145/3539618.3591684","DOIUrl":null,"url":null,"abstract":"Interactive Recommender Systems have played a crucial role in distinct entertainment domains through a Contextual Bandit model. Despite the current advances, their personalisation level is still directly related to the information previously available about the users. However, there are at least two scenarios of uncertainty about the users' preferences over their journey: (1) when the user joins for the first time and (2) when the system continually makes wrong recommendations because of prior misleading assumptions. In this work, we introduce concepts from the Active Learning theory to mitigate the impact of such scenarios. We modify three traditional bandits to recommend items with a higher potential to get more user information without decreasing the model's accuracy when an uncertain scenario is observed. Our experiments show that the modified models outperform all baselines by increasing the cumulative reward in the long run. Moreover, a counterfactual evaluation validates that such improvements were not simply achieved due to the bias of offline datasets.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Scenarios of Uncertainty about the Users' Preferences in Interactive Recommendation Systems\",\"authors\":\"N. Silva, Thiago Silva, Henrique Hott, Yan Ribeiro, A. Pereira, Leonardo Rocha\",\"doi\":\"10.1145/3539618.3591684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive Recommender Systems have played a crucial role in distinct entertainment domains through a Contextual Bandit model. Despite the current advances, their personalisation level is still directly related to the information previously available about the users. However, there are at least two scenarios of uncertainty about the users' preferences over their journey: (1) when the user joins for the first time and (2) when the system continually makes wrong recommendations because of prior misleading assumptions. In this work, we introduce concepts from the Active Learning theory to mitigate the impact of such scenarios. We modify three traditional bandits to recommend items with a higher potential to get more user information without decreasing the model's accuracy when an uncertain scenario is observed. Our experiments show that the modified models outperform all baselines by increasing the cumulative reward in the long run. Moreover, a counterfactual evaluation validates that such improvements were not simply achieved due to the bias of offline datasets.\",\"PeriodicalId\":425056,\"journal\":{\"name\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539618.3591684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Scenarios of Uncertainty about the Users' Preferences in Interactive Recommendation Systems
Interactive Recommender Systems have played a crucial role in distinct entertainment domains through a Contextual Bandit model. Despite the current advances, their personalisation level is still directly related to the information previously available about the users. However, there are at least two scenarios of uncertainty about the users' preferences over their journey: (1) when the user joins for the first time and (2) when the system continually makes wrong recommendations because of prior misleading assumptions. In this work, we introduce concepts from the Active Learning theory to mitigate the impact of such scenarios. We modify three traditional bandits to recommend items with a higher potential to get more user information without decreasing the model's accuracy when an uncertain scenario is observed. Our experiments show that the modified models outperform all baselines by increasing the cumulative reward in the long run. Moreover, a counterfactual evaluation validates that such improvements were not simply achieved due to the bias of offline datasets.