{"title":"光谱图像与特征协同聚类及其在基于内容的图像检索中的应用","authors":"Jian Guan, G. Qiu, X. Xue","doi":"10.1109/MMSP.2005.248647","DOIUrl":null,"url":null,"abstract":"In this paper, we present a spectral graph partitioning method for the co-clustering of images and features. We present experimental results, which show that spectral co-clustering has computational advantages over traditional k-means algorithm, especially when the dimensionalities of feature vectors are high. In the context of image clustering, we also show that spectral co-clustering gives better performances. We advocate that the images and features co-clustering framework offers new opportunities for developing advanced image database management technology and illustrate a possible scheme for exploiting the co-clustering results for developing a novel content-based image retrieval method","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Spectral Images and Features Co-Clustering with Application to Content-based Image Retrieval\",\"authors\":\"Jian Guan, G. Qiu, X. Xue\",\"doi\":\"10.1109/MMSP.2005.248647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a spectral graph partitioning method for the co-clustering of images and features. We present experimental results, which show that spectral co-clustering has computational advantages over traditional k-means algorithm, especially when the dimensionalities of feature vectors are high. In the context of image clustering, we also show that spectral co-clustering gives better performances. We advocate that the images and features co-clustering framework offers new opportunities for developing advanced image database management technology and illustrate a possible scheme for exploiting the co-clustering results for developing a novel content-based image retrieval method\",\"PeriodicalId\":191719,\"journal\":{\"name\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2005.248647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral Images and Features Co-Clustering with Application to Content-based Image Retrieval
In this paper, we present a spectral graph partitioning method for the co-clustering of images and features. We present experimental results, which show that spectral co-clustering has computational advantages over traditional k-means algorithm, especially when the dimensionalities of feature vectors are high. In the context of image clustering, we also show that spectral co-clustering gives better performances. We advocate that the images and features co-clustering framework offers new opportunities for developing advanced image database management technology and illustrate a possible scheme for exploiting the co-clustering results for developing a novel content-based image retrieval method