光谱图像与特征协同聚类及其在基于内容的图像检索中的应用

Jian Guan, G. Qiu, X. Xue
{"title":"光谱图像与特征协同聚类及其在基于内容的图像检索中的应用","authors":"Jian Guan, G. Qiu, X. Xue","doi":"10.1109/MMSP.2005.248647","DOIUrl":null,"url":null,"abstract":"In this paper, we present a spectral graph partitioning method for the co-clustering of images and features. We present experimental results, which show that spectral co-clustering has computational advantages over traditional k-means algorithm, especially when the dimensionalities of feature vectors are high. In the context of image clustering, we also show that spectral co-clustering gives better performances. We advocate that the images and features co-clustering framework offers new opportunities for developing advanced image database management technology and illustrate a possible scheme for exploiting the co-clustering results for developing a novel content-based image retrieval method","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Spectral Images and Features Co-Clustering with Application to Content-based Image Retrieval\",\"authors\":\"Jian Guan, G. Qiu, X. Xue\",\"doi\":\"10.1109/MMSP.2005.248647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a spectral graph partitioning method for the co-clustering of images and features. We present experimental results, which show that spectral co-clustering has computational advantages over traditional k-means algorithm, especially when the dimensionalities of feature vectors are high. In the context of image clustering, we also show that spectral co-clustering gives better performances. We advocate that the images and features co-clustering framework offers new opportunities for developing advanced image database management technology and illustrate a possible scheme for exploiting the co-clustering results for developing a novel content-based image retrieval method\",\"PeriodicalId\":191719,\"journal\":{\"name\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2005.248647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种用于图像和特征共聚类的谱图划分方法。实验结果表明,与传统的k-means算法相比,谱共聚类具有计算优势,特别是当特征向量的维数较高时。在图像聚类的背景下,我们也证明了光谱共聚类具有更好的性能。我们主张图像和特征共聚类框架为开发先进的图像数据库管理技术提供了新的机会,并说明了利用共聚类结果开发一种新的基于内容的图像检索方法的可能方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Images and Features Co-Clustering with Application to Content-based Image Retrieval
In this paper, we present a spectral graph partitioning method for the co-clustering of images and features. We present experimental results, which show that spectral co-clustering has computational advantages over traditional k-means algorithm, especially when the dimensionalities of feature vectors are high. In the context of image clustering, we also show that spectral co-clustering gives better performances. We advocate that the images and features co-clustering framework offers new opportunities for developing advanced image database management technology and illustrate a possible scheme for exploiting the co-clustering results for developing a novel content-based image retrieval method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信