不等式约束优化l1精确惩罚函数的光滑化新方法

Zhijie Wang, Sanming Liu
{"title":"不等式约束优化l1精确惩罚函数的光滑化新方法","authors":"Zhijie Wang, Sanming Liu","doi":"10.1109/CSO.2010.157","DOIUrl":null,"url":null,"abstract":"Exact penalty function methods for the solution of constrained optimization problem are based on the construction of a function whose unconstrained minimizing points are also solution of the constrained problem. One of the popular exact penalty functions is l1 exact penalty function. However l1 exact penalty function is not a smooth function. In this paper, we propose a new method for smoothing the l1 exact penalty function for inequality constrained optimization. Error estimations are obtained among the optimal objective function values of the smoothed penalty problem, of the nonsmooth penalty problem problem and of the original optimization problem. We develop an efficient algorithm for solving the optimization problem based the smoothed penalty function and prove the convergence of the algorithm.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Smooth Method for the l1 Exact Penalty Function for Inequality Constrained Optimization\",\"authors\":\"Zhijie Wang, Sanming Liu\",\"doi\":\"10.1109/CSO.2010.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exact penalty function methods for the solution of constrained optimization problem are based on the construction of a function whose unconstrained minimizing points are also solution of the constrained problem. One of the popular exact penalty functions is l1 exact penalty function. However l1 exact penalty function is not a smooth function. In this paper, we propose a new method for smoothing the l1 exact penalty function for inequality constrained optimization. Error estimations are obtained among the optimal objective function values of the smoothed penalty problem, of the nonsmooth penalty problem problem and of the original optimization problem. We develop an efficient algorithm for solving the optimization problem based the smoothed penalty function and prove the convergence of the algorithm.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

求解约束优化问题的精确罚函数方法是基于构造一个函数,该函数的无约束极小点也是约束问题的解。最流行的精确惩罚函数之一是l1精确惩罚函数。然而,l1精确惩罚函数并不是一个光滑函数。本文提出了一种新的不等式约束优化l1精确惩罚函数的光滑化方法。得到了光滑惩罚问题、非光滑惩罚问题和原优化问题的最优目标函数值之间的误差估计。提出了一种基于光滑惩罚函数的求解优化问题的有效算法,并证明了该算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Smooth Method for the l1 Exact Penalty Function for Inequality Constrained Optimization
Exact penalty function methods for the solution of constrained optimization problem are based on the construction of a function whose unconstrained minimizing points are also solution of the constrained problem. One of the popular exact penalty functions is l1 exact penalty function. However l1 exact penalty function is not a smooth function. In this paper, we propose a new method for smoothing the l1 exact penalty function for inequality constrained optimization. Error estimations are obtained among the optimal objective function values of the smoothed penalty problem, of the nonsmooth penalty problem problem and of the original optimization problem. We develop an efficient algorithm for solving the optimization problem based the smoothed penalty function and prove the convergence of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信