一种基于多通道长短期依赖残差网络的HEVC环内滤波器

Xiandong Meng, Chen Chen, Shuyuan Zhu, B. Zeng
{"title":"一种基于多通道长短期依赖残差网络的HEVC环内滤波器","authors":"Xiandong Meng, Chen Chen, Shuyuan Zhu, B. Zeng","doi":"10.1109/DCC.2018.00027","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new HEVC in-loop filter based on a multi-channel long-short-term dependency residual network (MLSDRN). Inspired by the information storage and information update function of human memory cell, our MLSDRN introduces an update cell to adaptively store and select the long-term and short-term dependency information through an adaptive learning process. In addition, we leverage the block boundary information that recorded in the bit-streams to improve the filter performance, which also makes our MLSDRN to unequally treat the video content. Meanwhile, the multi-channel is introduced to solve the illumination discrepancy problem. We integrate the novel in-loop filter into HM reference software, and applying it to luma and chroma components, simulation results demonstrate that the proposed in-loop filter can save BD-rate reduction up to 15.9% with ALF off. For luma component, the novel in-loop filter achieves 6.0%, 8.1%, 7.4% BD-rate saving for all intra, low delay and random access configurations, respectively.","PeriodicalId":137206,"journal":{"name":"2018 Data Compression Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A New HEVC In-Loop Filter Based on Multi-channel Long-Short-Term Dependency Residual Networks\",\"authors\":\"Xiandong Meng, Chen Chen, Shuyuan Zhu, B. Zeng\",\"doi\":\"10.1109/DCC.2018.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new HEVC in-loop filter based on a multi-channel long-short-term dependency residual network (MLSDRN). Inspired by the information storage and information update function of human memory cell, our MLSDRN introduces an update cell to adaptively store and select the long-term and short-term dependency information through an adaptive learning process. In addition, we leverage the block boundary information that recorded in the bit-streams to improve the filter performance, which also makes our MLSDRN to unequally treat the video content. Meanwhile, the multi-channel is introduced to solve the illumination discrepancy problem. We integrate the novel in-loop filter into HM reference software, and applying it to luma and chroma components, simulation results demonstrate that the proposed in-loop filter can save BD-rate reduction up to 15.9% with ALF off. For luma component, the novel in-loop filter achieves 6.0%, 8.1%, 7.4% BD-rate saving for all intra, low delay and random access configurations, respectively.\",\"PeriodicalId\":137206,\"journal\":{\"name\":\"2018 Data Compression Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2018.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种基于多通道长短期依赖残差网络(MLSDRN)的HEVC环内滤波器。受人类记忆细胞的信息存储和信息更新功能的启发,我们的MLSDRN引入了一个更新细胞,通过自适应学习过程自适应地存储和选择长期和短期依赖信息。此外,我们利用记录在比特流中的块边界信息来提高滤波性能,这也使得我们的MLSDRN对视频内容进行了不平等处理。同时,采用多通道技术解决光照差问题。我们将这种新型环内滤波器集成到HM参考软件中,并将其应用于亮度和色度分量,仿真结果表明,在关闭ALF的情况下,所提出的环内滤波器可节省高达15.9%的噪差。对于luma分量,新型环内滤波器在所有内、低延迟和随机接入配置下分别实现了6.0%、8.1%、7.4%的bd率节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New HEVC In-Loop Filter Based on Multi-channel Long-Short-Term Dependency Residual Networks
In this paper, we propose a new HEVC in-loop filter based on a multi-channel long-short-term dependency residual network (MLSDRN). Inspired by the information storage and information update function of human memory cell, our MLSDRN introduces an update cell to adaptively store and select the long-term and short-term dependency information through an adaptive learning process. In addition, we leverage the block boundary information that recorded in the bit-streams to improve the filter performance, which also makes our MLSDRN to unequally treat the video content. Meanwhile, the multi-channel is introduced to solve the illumination discrepancy problem. We integrate the novel in-loop filter into HM reference software, and applying it to luma and chroma components, simulation results demonstrate that the proposed in-loop filter can save BD-rate reduction up to 15.9% with ALF off. For luma component, the novel in-loop filter achieves 6.0%, 8.1%, 7.4% BD-rate saving for all intra, low delay and random access configurations, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信