MEMS加速度计六足智能控制

I. Nevliudov, Ganna Ponomaryova, V. Bortnikova, S. Maksymova, K. Kolesnyk
{"title":"MEMS加速度计六足智能控制","authors":"I. Nevliudov, Ganna Ponomaryova, V. Bortnikova, S. Maksymova, K. Kolesnyk","doi":"10.1109/MEMSTECH.2018.8365721","DOIUrl":null,"url":null,"abstract":"The paper presents the results of three-axis MEMS accelerometer practical Introduction into the hexapod control system to solve the problem of classifying its states in real time. An experiment was conducted in which machine learning various methods possibilities were studied to solve the problem of classifying the current state of a walking robot. The best results for the accuracy parameter were shown by the method Medium KNN.","PeriodicalId":179131,"journal":{"name":"2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MEMS accelerometer in hexapod intellectual control\",\"authors\":\"I. Nevliudov, Ganna Ponomaryova, V. Bortnikova, S. Maksymova, K. Kolesnyk\",\"doi\":\"10.1109/MEMSTECH.2018.8365721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of three-axis MEMS accelerometer practical Introduction into the hexapod control system to solve the problem of classifying its states in real time. An experiment was conducted in which machine learning various methods possibilities were studied to solve the problem of classifying the current state of a walking robot. The best results for the accuracy parameter were shown by the method Medium KNN.\",\"PeriodicalId\":179131,\"journal\":{\"name\":\"2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSTECH.2018.8365721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSTECH.2018.8365721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了三轴MEMS加速度计在六足控制系统中的实际应用,解决了六足控制系统状态实时分类问题。通过实验研究了机器学习各种方法的可能性,解决了行走机器人当前状态的分类问题。采用中等KNN法确定精度参数的效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEMS accelerometer in hexapod intellectual control
The paper presents the results of three-axis MEMS accelerometer practical Introduction into the hexapod control system to solve the problem of classifying its states in real time. An experiment was conducted in which machine learning various methods possibilities were studied to solve the problem of classifying the current state of a walking robot. The best results for the accuracy parameter were shown by the method Medium KNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信