主题演讲1:如何证明混合系统

André Platzer
{"title":"主题演讲1:如何证明混合系统","authors":"André Platzer","doi":"10.1109/MEMCOD.2016.7797739","DOIUrl":null,"url":null,"abstract":"Summary form only given. Hybrid systems combine discrete dynamics with continuous dynamics along differential equations. They arise frequently in many safety-critical application domains, including aviation, automotive, railway, and robotics. But how can we ensure that these systems are guaranteed to meet their design goals, e.g., that an aircraft will not crash into another one? This talk describes how hybrid systems can be proved using differential dynamic logic. Differential dynamic logic (dL) provides compositional logics, programming languages, and reasoning principles for hybrid systems. As implemented in the theorem prover KeYmaera X, dL has been instrumental in verifying many applications, including the Airborne Collision Avoidance System ACAS X, the European Train Control System ETCS, automotive systems, mobile robot navigation, and a surgical robot system for skull-base surgery.","PeriodicalId":180873,"journal":{"name":"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)","volume":"1022 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keynote talk I: How to prove hybrid systems\",\"authors\":\"André Platzer\",\"doi\":\"10.1109/MEMCOD.2016.7797739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Hybrid systems combine discrete dynamics with continuous dynamics along differential equations. They arise frequently in many safety-critical application domains, including aviation, automotive, railway, and robotics. But how can we ensure that these systems are guaranteed to meet their design goals, e.g., that an aircraft will not crash into another one? This talk describes how hybrid systems can be proved using differential dynamic logic. Differential dynamic logic (dL) provides compositional logics, programming languages, and reasoning principles for hybrid systems. As implemented in the theorem prover KeYmaera X, dL has been instrumental in verifying many applications, including the Airborne Collision Avoidance System ACAS X, the European Train Control System ETCS, automotive systems, mobile robot navigation, and a surgical robot system for skull-base surgery.\",\"PeriodicalId\":180873,\"journal\":{\"name\":\"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)\",\"volume\":\"1022 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMCOD.2016.7797739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMCOD.2016.7797739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。混合系统结合了离散动力学和连续动力学。它们经常出现在许多安全关键应用领域,包括航空、汽车、铁路和机器人。但是,我们如何确保这些系统达到设计目标,例如,一架飞机不会撞上另一架飞机?这个演讲描述了如何用微分动态逻辑证明混合系统。差分动态逻辑(dL)为混合系统提供组合逻辑、编程语言和推理原理。正如定理证明者KeYmaera X所实现的那样,dL在验证许多应用方面发挥了重要作用,包括机载防撞系统ACAS X、欧洲列车控制系统ETCS、汽车系统、移动机器人导航以及用于颅底手术的手术机器人系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keynote talk I: How to prove hybrid systems
Summary form only given. Hybrid systems combine discrete dynamics with continuous dynamics along differential equations. They arise frequently in many safety-critical application domains, including aviation, automotive, railway, and robotics. But how can we ensure that these systems are guaranteed to meet their design goals, e.g., that an aircraft will not crash into another one? This talk describes how hybrid systems can be proved using differential dynamic logic. Differential dynamic logic (dL) provides compositional logics, programming languages, and reasoning principles for hybrid systems. As implemented in the theorem prover KeYmaera X, dL has been instrumental in verifying many applications, including the Airborne Collision Avoidance System ACAS X, the European Train Control System ETCS, automotive systems, mobile robot navigation, and a surgical robot system for skull-base surgery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信