反馈失效时的控制:最优解的特征

D. Chakraborty, J. Hammer
{"title":"反馈失效时的控制:最优解的特征","authors":"D. Chakraborty, J. Hammer","doi":"10.1109/MED.2009.5164683","DOIUrl":null,"url":null,"abstract":"The problem of keeping performance errors within bounds while controlling a perturbed open loop linear system is considered. The objective is to maximize the time during which performance errors remain acceptable, given that the controlled system is within a specified neighborhood of its nominal parameter values. It is shown that the optimal solution is associated with a switching function z(t) which has the following feature: the optimal input signal is a bang-bang signal when z(t) is not the zero function.","PeriodicalId":422386,"journal":{"name":"2009 17th Mediterranean Conference on Control and Automation","volume":"58-60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Control during feedback failure: Characteristics of the optimal solution\",\"authors\":\"D. Chakraborty, J. Hammer\",\"doi\":\"10.1109/MED.2009.5164683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of keeping performance errors within bounds while controlling a perturbed open loop linear system is considered. The objective is to maximize the time during which performance errors remain acceptable, given that the controlled system is within a specified neighborhood of its nominal parameter values. It is shown that the optimal solution is associated with a switching function z(t) which has the following feature: the optimal input signal is a bang-bang signal when z(t) is not the zero function.\",\"PeriodicalId\":422386,\"journal\":{\"name\":\"2009 17th Mediterranean Conference on Control and Automation\",\"volume\":\"58-60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2009.5164683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2009.5164683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

研究了在控制摄动开环线性系统时,如何使系统性能误差保持在一定范围内的问题。目标是在给定受控系统在其标称参数值的指定邻域内,使性能误差保持可接受的时间最大化。结果表明,最优解与一个开关函数z(t)相关联,该开关函数具有以下特征:当z(t)不是零函数时,最优输入信号为bang-bang信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control during feedback failure: Characteristics of the optimal solution
The problem of keeping performance errors within bounds while controlling a perturbed open loop linear system is considered. The objective is to maximize the time during which performance errors remain acceptable, given that the controlled system is within a specified neighborhood of its nominal parameter values. It is shown that the optimal solution is associated with a switching function z(t) which has the following feature: the optimal input signal is a bang-bang signal when z(t) is not the zero function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信