具有可训练激活函数的神经非线性自适应滤波器

S. L. Goh, D. Mandic, M. Bozic
{"title":"具有可训练激活函数的神经非线性自适应滤波器","authors":"S. L. Goh, D. Mandic, M. Bozic","doi":"10.1109/NEUREL.2002.1057957","DOIUrl":null,"url":null,"abstract":"The normalized nonlinear gradient descent learning algorithm (NNGD) for a class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron) is extended to the case where the amplitude of the nonlinear activation function is made gradient adaptive. This makes the adaptive amplitude normalized nonlinear gradient descent (AANNGD) algorithm. The AANNGD is suitable for processing of nonlinear and nonstationary signals with a large dynamical range. Experimental results show that AANNGD outperforms the standard LMS, NGD, NNGD, the fully adaptive (FANNGD) and the sign algorithm on nonlinear input with large dynamics.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A neural nonlinear adaptive filter with a trainable activation function\",\"authors\":\"S. L. Goh, D. Mandic, M. Bozic\",\"doi\":\"10.1109/NEUREL.2002.1057957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The normalized nonlinear gradient descent learning algorithm (NNGD) for a class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron) is extended to the case where the amplitude of the nonlinear activation function is made gradient adaptive. This makes the adaptive amplitude normalized nonlinear gradient descent (AANNGD) algorithm. The AANNGD is suitable for processing of nonlinear and nonstationary signals with a large dynamical range. Experimental results show that AANNGD outperforms the standard LMS, NGD, NNGD, the fully adaptive (FANNGD) and the sign algorithm on nonlinear input with large dynamics.\",\"PeriodicalId\":347066,\"journal\":{\"name\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2002.1057957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将一类非线性有限脉冲响应(FIR)自适应滤波器(动态感知器)的归一化非线性梯度下降学习算法(NNGD)推广到非线性激活函数的幅值是梯度自适应的情况。这使得自适应幅度归一化非线性梯度下降(AANNGD)算法成为可能。该方法适用于处理动态范围较大的非线性和非平稳信号。实验结果表明,在大动态非线性输入下,AANNGD优于标准LMS、NGD、NNGD、全自适应(FANNGD)和符号算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural nonlinear adaptive filter with a trainable activation function
The normalized nonlinear gradient descent learning algorithm (NNGD) for a class of nonlinear finite impulse response (FIR) adaptive filters (dynamical perceptron) is extended to the case where the amplitude of the nonlinear activation function is made gradient adaptive. This makes the adaptive amplitude normalized nonlinear gradient descent (AANNGD) algorithm. The AANNGD is suitable for processing of nonlinear and nonstationary signals with a large dynamical range. Experimental results show that AANNGD outperforms the standard LMS, NGD, NNGD, the fully adaptive (FANNGD) and the sign algorithm on nonlinear input with large dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信