基于cnn的多通道人脸呈现攻击检测

Yuge Zhang, Min Zhao, Longbin Yan, Tiande Gao, Jie Chen
{"title":"基于cnn的多通道人脸呈现攻击检测","authors":"Yuge Zhang, Min Zhao, Longbin Yan, Tiande Gao, Jie Chen","doi":"10.1109/VCIP49819.2020.9301818","DOIUrl":null,"url":null,"abstract":"Recently, face recognition systems have received significant attention, and there have been many works focused on presentation attacks (PAs). However, the generalization capacity of PAs is still challenging in real scenarios, as the attack samples in the training database may not cover all possible PAs. In this paper, we propose to perform the face presentation attack detection (PAD) with multi-channel images using the convolutional neural network based anomaly detection. Multi-channel images endow us with rich information to distinguish between different mode of attacks, and the anomaly detection based technique ensures the generalization performance. We evaluate the performance of our methods using the wide multi-channel presentation attack (WMCA) dataset.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CNN-Based Anomaly Detection For Face Presentation Attack Detection With Multi-Channel Images\",\"authors\":\"Yuge Zhang, Min Zhao, Longbin Yan, Tiande Gao, Jie Chen\",\"doi\":\"10.1109/VCIP49819.2020.9301818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, face recognition systems have received significant attention, and there have been many works focused on presentation attacks (PAs). However, the generalization capacity of PAs is still challenging in real scenarios, as the attack samples in the training database may not cover all possible PAs. In this paper, we propose to perform the face presentation attack detection (PAD) with multi-channel images using the convolutional neural network based anomaly detection. Multi-channel images endow us with rich information to distinguish between different mode of attacks, and the anomaly detection based technique ensures the generalization performance. We evaluate the performance of our methods using the wide multi-channel presentation attack (WMCA) dataset.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,人脸识别系统受到了广泛的关注,并有许多研究集中在表现攻击(PAs)方面。然而,在实际场景中,由于训练数据库中的攻击样本可能无法覆盖所有可能的pa,因此pa的泛化能力仍然具有挑战性。在本文中,我们提出使用基于卷积神经网络的异常检测对多通道图像进行人脸呈现攻击检测(PAD)。多通道图像为我们区分不同的攻击方式提供了丰富的信息,基于异常检测的技术保证了算法的泛化性能。我们使用宽多通道表示攻击(WMCA)数据集评估我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-Based Anomaly Detection For Face Presentation Attack Detection With Multi-Channel Images
Recently, face recognition systems have received significant attention, and there have been many works focused on presentation attacks (PAs). However, the generalization capacity of PAs is still challenging in real scenarios, as the attack samples in the training database may not cover all possible PAs. In this paper, we propose to perform the face presentation attack detection (PAD) with multi-channel images using the convolutional neural network based anomaly detection. Multi-channel images endow us with rich information to distinguish between different mode of attacks, and the anomaly detection based technique ensures the generalization performance. We evaluate the performance of our methods using the wide multi-channel presentation attack (WMCA) dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信