运动伪影污染的肌电信号信噪比估计

Thandar Oo, P. Phukpattaranont
{"title":"运动伪影污染的肌电信号信噪比估计","authors":"Thandar Oo, P. Phukpattaranont","doi":"10.1109/BMEiCON56653.2022.10012080","DOIUrl":null,"url":null,"abstract":"An electromyography (EMG) recognition system is essential for enabling a variety of applications. However, motion artifact contaminated with the EMG signal as it passes through or by various tissues may degrade the recognition performance. We present the algorithm for signal-to-noise ratio (SNR) estimation in EMG signals contaminated with motion artifact. Six features derived from the EMG signals are used as the neural network input: skewness (SKEW), kurtosis (KURT), mean absolute value (MAV), wavelength (WL), zero crossing (ZC), and mean frequency (MNF). The estimated SNR values are the neural network output. The best mean and standard deviations of the correlation coefficient (CC) between the actual and estimated SNR values are provided by the MNF $(0.9699 \\pm 0.0076)$. Future research may concentrate on determining SNR values using real EMG signals in their natural surroundings.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SNR estimation in EMG signals contaminated with motion artifact\",\"authors\":\"Thandar Oo, P. Phukpattaranont\",\"doi\":\"10.1109/BMEiCON56653.2022.10012080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electromyography (EMG) recognition system is essential for enabling a variety of applications. However, motion artifact contaminated with the EMG signal as it passes through or by various tissues may degrade the recognition performance. We present the algorithm for signal-to-noise ratio (SNR) estimation in EMG signals contaminated with motion artifact. Six features derived from the EMG signals are used as the neural network input: skewness (SKEW), kurtosis (KURT), mean absolute value (MAV), wavelength (WL), zero crossing (ZC), and mean frequency (MNF). The estimated SNR values are the neural network output. The best mean and standard deviations of the correlation coefficient (CC) between the actual and estimated SNR values are provided by the MNF $(0.9699 \\\\pm 0.0076)$. Future research may concentrate on determining SNR values using real EMG signals in their natural surroundings.\",\"PeriodicalId\":177401,\"journal\":{\"name\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEiCON56653.2022.10012080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肌电(EMG)识别系统对于实现各种应用是必不可少的。然而,当肌电图信号通过或被各种组织污染时,运动伪影可能会降低识别性能。提出了一种运动伪影污染的肌电信号信噪比估计算法。从肌电信号中提取的六个特征被用作神经网络的输入:偏度(SKEW)、峰度(KURT)、平均绝对值(MAV)、波长(WL)、过零(ZC)和平均频率(MNF)。估计的信噪比值是神经网络的输出。实际信噪比值和估计信噪比值之间的相关系数(CC)的最佳平均值和标准差由MNF $(0.9699 \pm 0.0076)$提供。未来的研究可能会集中在确定信噪比值,使用真实的肌电信号在他们的自然环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SNR estimation in EMG signals contaminated with motion artifact
An electromyography (EMG) recognition system is essential for enabling a variety of applications. However, motion artifact contaminated with the EMG signal as it passes through or by various tissues may degrade the recognition performance. We present the algorithm for signal-to-noise ratio (SNR) estimation in EMG signals contaminated with motion artifact. Six features derived from the EMG signals are used as the neural network input: skewness (SKEW), kurtosis (KURT), mean absolute value (MAV), wavelength (WL), zero crossing (ZC), and mean frequency (MNF). The estimated SNR values are the neural network output. The best mean and standard deviations of the correlation coefficient (CC) between the actual and estimated SNR values are provided by the MNF $(0.9699 \pm 0.0076)$. Future research may concentrate on determining SNR values using real EMG signals in their natural surroundings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信