使用标签功能对农业新闻进行自动分类:一种弱监管方法

Rodrigo Neves Trindade, Luiz H. D. Martins, G. N. Correa, I. J. Reis Filho
{"title":"使用标签功能对农业新闻进行自动分类:一种弱监管方法","authors":"Rodrigo Neves Trindade, Luiz H. D. Martins, G. N. Correa, I. J. Reis Filho","doi":"10.5753/eniac.2022.227219","DOIUrl":null,"url":null,"abstract":"O grande volume de notícias geradas na internet têm aumentado o uso de aplicações com aprendizado de máquina. Modelos preditivos precisam de amostras rotuladas em grande quantidade e qualidade para garantir boa acurácia em tarefas de classificação. No entanto, a tarefas de rotular notícias é manual e demanda tempo do especialista de domínio. Neste trabalho, uma função é proposta para rotular notícias do agronegócio. Oscilações das séries de preços da soja no mercado nacional, internacional e cotação do dólar são a entrada para a função de rotulagem. Diferentes paradigmas de aprendizado e representações textuais são usadas na etapa de avaliação. Os modelos de linguagem neural demonstraram melhor desempenho e os resultados indicam que a proposta pode ser uma alternativa para aplicações de tempo real.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a labeling function for automatic classification of agribusiness news: A weak supervisory approach\",\"authors\":\"Rodrigo Neves Trindade, Luiz H. D. Martins, G. N. Correa, I. J. Reis Filho\",\"doi\":\"10.5753/eniac.2022.227219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O grande volume de notícias geradas na internet têm aumentado o uso de aplicações com aprendizado de máquina. Modelos preditivos precisam de amostras rotuladas em grande quantidade e qualidade para garantir boa acurácia em tarefas de classificação. No entanto, a tarefas de rotular notícias é manual e demanda tempo do especialista de domínio. Neste trabalho, uma função é proposta para rotular notícias do agronegócio. Oscilações das séries de preços da soja no mercado nacional, internacional e cotação do dólar são a entrada para a função de rotulagem. Diferentes paradigmas de aprendizado e representações textuais são usadas na etapa de avaliação. Os modelos de linguagem neural demonstraram melhor desempenho e os resultados indicam que a proposta pode ser uma alternativa para aplicações de tempo real.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互联网上产生的大量新闻增加了机器学习应用程序的使用。预测模型需要大量和高质量的标记样品,以确保分类任务的良好准确性。然而,标记新闻的任务是手工的,需要领域专家的时间。在这项工作中,提出了一个函数来标记农业企业新闻。大豆价格系列在国内和国际市场的波动和美元汇率是标签功能的输入。在评估阶段使用了不同的学习范式和文本表示。神经语言模型表现出更好的性能,结果表明,该方案可以作为实时应用的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using a labeling function for automatic classification of agribusiness news: A weak supervisory approach
O grande volume de notícias geradas na internet têm aumentado o uso de aplicações com aprendizado de máquina. Modelos preditivos precisam de amostras rotuladas em grande quantidade e qualidade para garantir boa acurácia em tarefas de classificação. No entanto, a tarefas de rotular notícias é manual e demanda tempo do especialista de domínio. Neste trabalho, uma função é proposta para rotular notícias do agronegócio. Oscilações das séries de preços da soja no mercado nacional, internacional e cotação do dólar são a entrada para a função de rotulagem. Diferentes paradigmas de aprendizado e representações textuais são usadas na etapa de avaliação. Os modelos de linguagem neural demonstraram melhor desempenho e os resultados indicam que a proposta pode ser uma alternativa para aplicações de tempo real.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信