基于Kohonen特征映射的联想记忆顺序学习

Takeo Yamada, M. Hattori, Masayuki Morisawa, Hiroshi Ito
{"title":"基于Kohonen特征映射的联想记忆顺序学习","authors":"Takeo Yamada, M. Hattori, Masayuki Morisawa, Hiroshi Ito","doi":"10.1109/IJCNN.1999.832675","DOIUrl":null,"url":null,"abstract":"We propose a sequential learning algorithm for an associative memory based on Kohonen feature map. In order to store new information without retraining weights on previously learned information, weights fixed neurons and weights semi-fixed neurons are used in the proposed algorithm. Owing to the semi-fixed neurons, the associative memory becomes structurally robust. Moreover, it has the following features: 1) it is robust for noisy inputs; 2) it has high storage capacity; and 3) it casts deal with one-to-many associations.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Sequential learning for associative memory using Kohonen feature map\",\"authors\":\"Takeo Yamada, M. Hattori, Masayuki Morisawa, Hiroshi Ito\",\"doi\":\"10.1109/IJCNN.1999.832675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a sequential learning algorithm for an associative memory based on Kohonen feature map. In order to store new information without retraining weights on previously learned information, weights fixed neurons and weights semi-fixed neurons are used in the proposed algorithm. Owing to the semi-fixed neurons, the associative memory becomes structurally robust. Moreover, it has the following features: 1) it is robust for noisy inputs; 2) it has high storage capacity; and 3) it casts deal with one-to-many associations.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.832675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.832675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

提出了一种基于Kohonen特征映射的联想记忆序列学习算法。为了在不重新训练权值的情况下存储新信息,该算法采用了权值固定神经元和权值半固定神经元。由于半固定神经元的存在,联想记忆在结构上具有鲁棒性。此外,它还具有以下特点:1)对噪声输入具有鲁棒性;2)存储容量大;3)它处理一对多关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential learning for associative memory using Kohonen feature map
We propose a sequential learning algorithm for an associative memory based on Kohonen feature map. In order to store new information without retraining weights on previously learned information, weights fixed neurons and weights semi-fixed neurons are used in the proposed algorithm. Owing to the semi-fixed neurons, the associative memory becomes structurally robust. Moreover, it has the following features: 1) it is robust for noisy inputs; 2) it has high storage capacity; and 3) it casts deal with one-to-many associations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信