{"title":"作为半监督学习问题的少镜头目标检测","authors":"W. Bailer, Hannes Fassold","doi":"10.1145/3549555.3549599","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of dealing with few-shot learning settings in which different classes are annotated on different datasets. Each part of the data has exhaustive annotations for only one or a small set of classes, but not for others used in training. It is likely, that unannotated samples of a class exist, potentially impacting the gradient as negative samples. Because of this fact, we argue that few-shot learning is essentially a semi-supervised learning problem. We analyze how approaches from semi-supervised learning can be applied. In particular, the use of soft-sampling to weight the gradient based on overlap of detections and ground truth, and creating missing annotations using a preliminary detector are studied. The use of soft-sampling provides small but consistent improvements, at much lower computational effort than predicting additional annotations.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-shot Object Detection as a Semi-supervised Learning Problem\",\"authors\":\"W. Bailer, Hannes Fassold\",\"doi\":\"10.1145/3549555.3549599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of dealing with few-shot learning settings in which different classes are annotated on different datasets. Each part of the data has exhaustive annotations for only one or a small set of classes, but not for others used in training. It is likely, that unannotated samples of a class exist, potentially impacting the gradient as negative samples. Because of this fact, we argue that few-shot learning is essentially a semi-supervised learning problem. We analyze how approaches from semi-supervised learning can be applied. In particular, the use of soft-sampling to weight the gradient based on overlap of detections and ground truth, and creating missing annotations using a preliminary detector are studied. The use of soft-sampling provides small but consistent improvements, at much lower computational effort than predicting additional annotations.\",\"PeriodicalId\":191591,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549555.3549599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549555.3549599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Few-shot Object Detection as a Semi-supervised Learning Problem
This paper addresses the issue of dealing with few-shot learning settings in which different classes are annotated on different datasets. Each part of the data has exhaustive annotations for only one or a small set of classes, but not for others used in training. It is likely, that unannotated samples of a class exist, potentially impacting the gradient as negative samples. Because of this fact, we argue that few-shot learning is essentially a semi-supervised learning problem. We analyze how approaches from semi-supervised learning can be applied. In particular, the use of soft-sampling to weight the gradient based on overlap of detections and ground truth, and creating missing annotations using a preliminary detector are studied. The use of soft-sampling provides small but consistent improvements, at much lower computational effort than predicting additional annotations.