量子Blahut-Arimoto算法

Navneeth Ramakrishnan, Raban Iten, V. Scholz, M. Berta
{"title":"量子Blahut-Arimoto算法","authors":"Navneeth Ramakrishnan, Raban Iten, V. Scholz, M. Berta","doi":"10.1109/ISIT44484.2020.9174429","DOIUrl":null,"url":null,"abstract":"We generalize alternating optimization algorithms of Blahut-Arimoto type to the quantum setting. In particular, we give iterative algorithms to compute the mutual information of quantum channels, the thermodynamic capacity of quantum channels, the coherent information of less noisy quantum channels, and the Holevo quantity of classical-quantum channels. Our convergence analysis is based on quantum entropy inequalities and leads to a priori additive ε-approximations after $\\mathcal{O}\\left( {{\\varepsilon ^{ - 1}}\\log N} \\right)$ iterations, where N denotes the input dimension of the channel. We complement our analysis with an a posteriori stopping criterion which allows us to terminate the algorithm after significantly fewer iterations compared to the a priori criterion in numerical examples. Finally, we discuss heuristics to accelerate the convergence.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quantum Blahut-Arimoto Algorithms\",\"authors\":\"Navneeth Ramakrishnan, Raban Iten, V. Scholz, M. Berta\",\"doi\":\"10.1109/ISIT44484.2020.9174429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize alternating optimization algorithms of Blahut-Arimoto type to the quantum setting. In particular, we give iterative algorithms to compute the mutual information of quantum channels, the thermodynamic capacity of quantum channels, the coherent information of less noisy quantum channels, and the Holevo quantity of classical-quantum channels. Our convergence analysis is based on quantum entropy inequalities and leads to a priori additive ε-approximations after $\\\\mathcal{O}\\\\left( {{\\\\varepsilon ^{ - 1}}\\\\log N} \\\\right)$ iterations, where N denotes the input dimension of the channel. We complement our analysis with an a posteriori stopping criterion which allows us to terminate the algorithm after significantly fewer iterations compared to the a priori criterion in numerical examples. Finally, we discuss heuristics to accelerate the convergence.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将Blahut-Arimoto型的交替优化算法推广到量子环境。特别地,我们给出了计算量子通道互信息、量子通道热力学容量、低噪声量子通道相干信息和经典量子通道Holevo量的迭代算法。我们的收敛分析基于量子熵不等式,并在$\mathcal{O}\left( {{\varepsilon ^{ - 1}}\log N} \right)$迭代后导致先验的可加性ε-近似,其中N表示通道的输入维数。我们用一个后验停止准则来补充我们的分析,与数值示例中的先验准则相比,它允许我们在迭代次数明显减少后终止算法。最后,我们讨论了加速收敛的启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Blahut-Arimoto Algorithms
We generalize alternating optimization algorithms of Blahut-Arimoto type to the quantum setting. In particular, we give iterative algorithms to compute the mutual information of quantum channels, the thermodynamic capacity of quantum channels, the coherent information of less noisy quantum channels, and the Holevo quantity of classical-quantum channels. Our convergence analysis is based on quantum entropy inequalities and leads to a priori additive ε-approximations after $\mathcal{O}\left( {{\varepsilon ^{ - 1}}\log N} \right)$ iterations, where N denotes the input dimension of the channel. We complement our analysis with an a posteriori stopping criterion which allows us to terminate the algorithm after significantly fewer iterations compared to the a priori criterion in numerical examples. Finally, we discuss heuristics to accelerate the convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信