Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, L. Gravano
{"title":"搜索还是爬行?面向以文本为中心的任务的查询优化器","authors":"Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, L. Gravano","doi":"10.1145/1142473.1142504","DOIUrl":null,"url":null,"abstract":"Text is ubiquitous and, not surprisingly, many important applications rely on textual data for a variety of tasks. As a notable example, information extraction applications derive structured relations from unstructured text; as another example, focused crawlers explore the web to locate pages about specific topics. Execution plans for text-centric tasks follow two general paradigms for processing a text database: either we can scan, or 'crawl,\" the text database or, alternatively, we can exploit search engine indexes and retrieve the documents of interest via carefully crafted queries constructed in task-specific ways. The choice between crawl- and query-based execution plans can have a substantial impact on both execution time and output \"completeness\" (e.g., in terms of recall). Nevertheless, this choice is typically ad-hoc and based on heuristics or plain intuition. In this paper, we present fundamental building blocks to make the choice of execution plans for text-centric tasks in an informed, cost-based way. Towards this goal, we show how to analyze query- and crawl-based plans in terms of both execution time and output completeness. We adapt results from random-graph theory and statistics to develop a rigorous cost model for the execution plans. Our cost model reflects the fact that the performance of the plans depends on fundamental task-specific properties of the underlying text databases. We identify these properties and present efficient techniques for estimating the associated cost-model parameters. Overall, our approach helps predict the most appropriate execution plans for a task, resulting in significant efficiency and output completeness benefits. We complement our results with a large-scale experimental evaluation for three important text-centric tasks and over multiple real-life data sets.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"To search or to crawl?: towards a query optimizer for text-centric tasks\",\"authors\":\"Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, L. Gravano\",\"doi\":\"10.1145/1142473.1142504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text is ubiquitous and, not surprisingly, many important applications rely on textual data for a variety of tasks. As a notable example, information extraction applications derive structured relations from unstructured text; as another example, focused crawlers explore the web to locate pages about specific topics. Execution plans for text-centric tasks follow two general paradigms for processing a text database: either we can scan, or 'crawl,\\\" the text database or, alternatively, we can exploit search engine indexes and retrieve the documents of interest via carefully crafted queries constructed in task-specific ways. The choice between crawl- and query-based execution plans can have a substantial impact on both execution time and output \\\"completeness\\\" (e.g., in terms of recall). Nevertheless, this choice is typically ad-hoc and based on heuristics or plain intuition. In this paper, we present fundamental building blocks to make the choice of execution plans for text-centric tasks in an informed, cost-based way. Towards this goal, we show how to analyze query- and crawl-based plans in terms of both execution time and output completeness. We adapt results from random-graph theory and statistics to develop a rigorous cost model for the execution plans. Our cost model reflects the fact that the performance of the plans depends on fundamental task-specific properties of the underlying text databases. We identify these properties and present efficient techniques for estimating the associated cost-model parameters. Overall, our approach helps predict the most appropriate execution plans for a task, resulting in significant efficiency and output completeness benefits. We complement our results with a large-scale experimental evaluation for three important text-centric tasks and over multiple real-life data sets.\",\"PeriodicalId\":416090,\"journal\":{\"name\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1142473.1142504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To search or to crawl?: towards a query optimizer for text-centric tasks
Text is ubiquitous and, not surprisingly, many important applications rely on textual data for a variety of tasks. As a notable example, information extraction applications derive structured relations from unstructured text; as another example, focused crawlers explore the web to locate pages about specific topics. Execution plans for text-centric tasks follow two general paradigms for processing a text database: either we can scan, or 'crawl," the text database or, alternatively, we can exploit search engine indexes and retrieve the documents of interest via carefully crafted queries constructed in task-specific ways. The choice between crawl- and query-based execution plans can have a substantial impact on both execution time and output "completeness" (e.g., in terms of recall). Nevertheless, this choice is typically ad-hoc and based on heuristics or plain intuition. In this paper, we present fundamental building blocks to make the choice of execution plans for text-centric tasks in an informed, cost-based way. Towards this goal, we show how to analyze query- and crawl-based plans in terms of both execution time and output completeness. We adapt results from random-graph theory and statistics to develop a rigorous cost model for the execution plans. Our cost model reflects the fact that the performance of the plans depends on fundamental task-specific properties of the underlying text databases. We identify these properties and present efficient techniques for estimating the associated cost-model parameters. Overall, our approach helps predict the most appropriate execution plans for a task, resulting in significant efficiency and output completeness benefits. We complement our results with a large-scale experimental evaluation for three important text-centric tasks and over multiple real-life data sets.