马尔可夫切换下的一类跳跃-扩散随机微分系统及其解的解析性质

Xiangdong Liu, Zeyu Mi, Huida Chen
{"title":"马尔可夫切换下的一类跳跃-扩散随机微分系统及其解的解析性质","authors":"Xiangdong Liu, Zeyu Mi, Huida Chen","doi":"10.21078/JSSI-2020-017-16","DOIUrl":null,"url":null,"abstract":"Abstract Our article discusses a class of Jump-diffusion stochastic differential system under Markovian switching (JD-SDS-MS). This model is generated by introducing Poisson process and Markovian switching based on a normal stochastic differential equation. Our work dedicates to analytical properties of solutions to this model. First, we give some properties of the solution, including existence, uniqueness, non-negative and global nature. Next, boundedness of first moment of the solution to this model is considered. Third, properties about coefficients of JD-SDS-MS is proved by using a right continuous markov chain. Last, we study the convergence of Euler-Maruyama numerical solutions and apply it to pricing bonds.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class of Jump-Diffusion Stochastic Differential System Under Markovian Switching and Analytical Properties of Solutions\",\"authors\":\"Xiangdong Liu, Zeyu Mi, Huida Chen\",\"doi\":\"10.21078/JSSI-2020-017-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our article discusses a class of Jump-diffusion stochastic differential system under Markovian switching (JD-SDS-MS). This model is generated by introducing Poisson process and Markovian switching based on a normal stochastic differential equation. Our work dedicates to analytical properties of solutions to this model. First, we give some properties of the solution, including existence, uniqueness, non-negative and global nature. Next, boundedness of first moment of the solution to this model is considered. Third, properties about coefficients of JD-SDS-MS is proved by using a right continuous markov chain. Last, we study the convergence of Euler-Maruyama numerical solutions and apply it to pricing bonds.\",\"PeriodicalId\":258223,\"journal\":{\"name\":\"Journal of Systems Science and Information\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Science and Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21078/JSSI-2020-017-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2020-017-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类马尔可夫切换下的跳跃扩散随机微分系统(JD-SDS-MS)。该模型是在一个正态随机微分方程的基础上,引入泊松过程和马尔可夫转换生成的。我们的工作致力于这个模型的解的解析性质。首先给出了解的存在性、唯一性、非负性和全局性。其次,考虑了该模型解的一阶矩的有界性。第三,利用右连续马尔可夫链证明了JD-SDS-MS系数的性质。最后,研究了Euler-Maruyama数值解的收敛性,并将其应用于债券定价问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Class of Jump-Diffusion Stochastic Differential System Under Markovian Switching and Analytical Properties of Solutions
Abstract Our article discusses a class of Jump-diffusion stochastic differential system under Markovian switching (JD-SDS-MS). This model is generated by introducing Poisson process and Markovian switching based on a normal stochastic differential equation. Our work dedicates to analytical properties of solutions to this model. First, we give some properties of the solution, including existence, uniqueness, non-negative and global nature. Next, boundedness of first moment of the solution to this model is considered. Third, properties about coefficients of JD-SDS-MS is proved by using a right continuous markov chain. Last, we study the convergence of Euler-Maruyama numerical solutions and apply it to pricing bonds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信