张量Lucas-Kanade:基于张量颜色表示和张量代数的光流估计

Fetnanda Tamy Ishii, F. C. Flores, L. Rittner
{"title":"张量Lucas-Kanade:基于张量颜色表示和张量代数的光流估计","authors":"Fetnanda Tamy Ishii, F. C. Flores, L. Rittner","doi":"10.1109/ISCC.2018.8538466","DOIUrl":null,"url":null,"abstract":"Color data and optical flow estimation are important attributes to be processed in color image sequence. To deal with this, it is important to define methods for color information measure and strategies to solve the well-known Aperture Problem. This work proposes a new optical flow estimation approach for color image sequences called Tensorial Lucas-Kanade Technique. The technique proposed is based on tensorial color representation, tensorial morphological gradient and Lucas-Kanade optical flow estimation technique. Experimental results, comparing to ground truth optical flow by two different criteria, demonstrate the accuracy of its application in several sequences of synthetic color images. Four different tensorial dissimilarity measures were used to evaluate the technique. Comparing to the Lucas-Kanade’s, tensorial technique had smaller average error in 94% of cases, with different dissimilarity measures and in 47% of cases, using the Frobenius norm.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tensorial Lucas-Kanade: An Optical Flow Estimator Based on Tensorial Color Representation and Tensorial Algebra\",\"authors\":\"Fetnanda Tamy Ishii, F. C. Flores, L. Rittner\",\"doi\":\"10.1109/ISCC.2018.8538466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color data and optical flow estimation are important attributes to be processed in color image sequence. To deal with this, it is important to define methods for color information measure and strategies to solve the well-known Aperture Problem. This work proposes a new optical flow estimation approach for color image sequences called Tensorial Lucas-Kanade Technique. The technique proposed is based on tensorial color representation, tensorial morphological gradient and Lucas-Kanade optical flow estimation technique. Experimental results, comparing to ground truth optical flow by two different criteria, demonstrate the accuracy of its application in several sequences of synthetic color images. Four different tensorial dissimilarity measures were used to evaluate the technique. Comparing to the Lucas-Kanade’s, tensorial technique had smaller average error in 94% of cases, with different dissimilarity measures and in 47% of cases, using the Frobenius norm.\",\"PeriodicalId\":233592,\"journal\":{\"name\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2018.8538466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

色彩数据和光流估计是彩色图像序列中需要处理的重要属性。为了解决这个问题,定义颜色信息测量方法和解决众所周知的孔径问题的策略是很重要的。本文提出了一种新的彩色图像序列光流估计方法,称为张sorial Lucas-Kanade技术。该技术基于张量颜色表示、张量形态梯度和Lucas-Kanade光流估计技术。实验结果通过两种不同标准与地真光流的比较,证明了其在合成彩色图像序列中的应用的准确性。使用四种不同的张量不相似性测量来评估该技术。与Lucas-Kanade的方法相比,张量法在94%的情况下具有更小的平均误差,使用不同的不相似性测量,在47%的情况下,使用Frobenius范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensorial Lucas-Kanade: An Optical Flow Estimator Based on Tensorial Color Representation and Tensorial Algebra
Color data and optical flow estimation are important attributes to be processed in color image sequence. To deal with this, it is important to define methods for color information measure and strategies to solve the well-known Aperture Problem. This work proposes a new optical flow estimation approach for color image sequences called Tensorial Lucas-Kanade Technique. The technique proposed is based on tensorial color representation, tensorial morphological gradient and Lucas-Kanade optical flow estimation technique. Experimental results, comparing to ground truth optical flow by two different criteria, demonstrate the accuracy of its application in several sequences of synthetic color images. Four different tensorial dissimilarity measures were used to evaluate the technique. Comparing to the Lucas-Kanade’s, tensorial technique had smaller average error in 94% of cases, with different dissimilarity measures and in 47% of cases, using the Frobenius norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信