基于顺序蒙特卡罗阈值法的DCT语音增强

M. Meddah, A. Amrouche, A. Taleb-Ahmed
{"title":"基于顺序蒙特卡罗阈值法的DCT语音增强","authors":"M. Meddah, A. Amrouche, A. Taleb-Ahmed","doi":"10.1109/EDIS.2017.8284035","DOIUrl":null,"url":null,"abstract":"This paper deals with speech enhancement achieved by thresholding the Discrete Cosine Transform coefficients of noisy speech. The sequential Monte-Carlo algorithm is used to approximate the a posteriori threshold distribution, thus the minimum mean square error estimate of the thresholded speech samples over each frequency bin are deduced. The a priori distribution of the time-frequency varying threshold is adopted as the importance density and the Gaussian random walk is used to model the threshold particle mutation. Experiences with additive white Gaussian and car noises shown the improved performance of the proposed method, compared to current speech enhancement algorithms.","PeriodicalId":401258,"journal":{"name":"2017 First International Conference on Embedded & Distributed Systems (EDiS)","volume":"61 52","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thresholding based on sequential Monte-Carlo for DCT speech enhancement\",\"authors\":\"M. Meddah, A. Amrouche, A. Taleb-Ahmed\",\"doi\":\"10.1109/EDIS.2017.8284035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with speech enhancement achieved by thresholding the Discrete Cosine Transform coefficients of noisy speech. The sequential Monte-Carlo algorithm is used to approximate the a posteriori threshold distribution, thus the minimum mean square error estimate of the thresholded speech samples over each frequency bin are deduced. The a priori distribution of the time-frequency varying threshold is adopted as the importance density and the Gaussian random walk is used to model the threshold particle mutation. Experiences with additive white Gaussian and car noises shown the improved performance of the proposed method, compared to current speech enhancement algorithms.\",\"PeriodicalId\":401258,\"journal\":{\"name\":\"2017 First International Conference on Embedded & Distributed Systems (EDiS)\",\"volume\":\"61 52\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 First International Conference on Embedded & Distributed Systems (EDiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDIS.2017.8284035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDIS.2017.8284035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了通过对噪声语音的离散余弦变换系数进行阈值化来实现语音增强。采用顺序蒙特卡罗算法近似后验阈值分布,从而推导出阈值语音样本在每个频域上的最小均方误差估计。采用时频变化阈值的先验分布作为重要密度,采用高斯随机游走模型对阈值粒子突变进行建模。对加性高斯白噪声和汽车噪声的实验表明,与现有的语音增强算法相比,该方法的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thresholding based on sequential Monte-Carlo for DCT speech enhancement
This paper deals with speech enhancement achieved by thresholding the Discrete Cosine Transform coefficients of noisy speech. The sequential Monte-Carlo algorithm is used to approximate the a posteriori threshold distribution, thus the minimum mean square error estimate of the thresholded speech samples over each frequency bin are deduced. The a priori distribution of the time-frequency varying threshold is adopted as the importance density and the Gaussian random walk is used to model the threshold particle mutation. Experiences with additive white Gaussian and car noises shown the improved performance of the proposed method, compared to current speech enhancement algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信