一种集成的多语言场景文本检测方法

W. Liao, Yi Liang, Yi-Chieh Wu
{"title":"一种集成的多语言场景文本检测方法","authors":"W. Liao, Yi Liang, Yi-Chieh Wu","doi":"10.1109/SOCPAR.2015.7492809","DOIUrl":null,"url":null,"abstract":"Text messages in an image usually contain useful information related to the scene, such as location, name, direction or warning. As such, robust and efficient scene text detection has gained increasing attention in the area of computer vision recently. However, most existing scene text detection methods are devised to process Latin-based languages. For the few researches that reported the investigation of Chinese text, the detection rate was inferior to the result for English. In this research, we propose a multilingual scene text detection algorithm for both Chinese and English. The method comprises of four stages: 1. Preprocessing by bilateral filter to make the text region more stable. 2. Extracting candidate text edge and region using Canny edge detector and Maximally Stable Extremal Region (MSER) respectively. Then combine these two features to achieve more robust results. 3. Linking candidate characters: considering both horizontal and vertical direction, character candidates are clustered into text candidates using geometrical constraints. 4. Classifying candidate texts using support vector machine (SVM), to separate text and non-text areas. Experimental results show that the proposed method detects both Chinese and English texts, and achieve satisfactory performance compared to those approaches designed only for English detection.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An integrated approach for multilingual scene text detection\",\"authors\":\"W. Liao, Yi Liang, Yi-Chieh Wu\",\"doi\":\"10.1109/SOCPAR.2015.7492809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text messages in an image usually contain useful information related to the scene, such as location, name, direction or warning. As such, robust and efficient scene text detection has gained increasing attention in the area of computer vision recently. However, most existing scene text detection methods are devised to process Latin-based languages. For the few researches that reported the investigation of Chinese text, the detection rate was inferior to the result for English. In this research, we propose a multilingual scene text detection algorithm for both Chinese and English. The method comprises of four stages: 1. Preprocessing by bilateral filter to make the text region more stable. 2. Extracting candidate text edge and region using Canny edge detector and Maximally Stable Extremal Region (MSER) respectively. Then combine these two features to achieve more robust results. 3. Linking candidate characters: considering both horizontal and vertical direction, character candidates are clustered into text candidates using geometrical constraints. 4. Classifying candidate texts using support vector machine (SVM), to separate text and non-text areas. Experimental results show that the proposed method detects both Chinese and English texts, and achieve satisfactory performance compared to those approaches designed only for English detection.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

图像中的文字信息通常包含与场景相关的有用信息,例如位置、名称、方向或警告。因此,鲁棒和高效的场景文本检测近年来在计算机视觉领域受到越来越多的关注。然而,大多数现有的场景文本检测方法都是针对拉丁语言设计的。少数报道中文文本调查的研究,其检出率不如英文文本。在本研究中,我们提出了一种中文和英文的多语言场景文本检测算法。该方法包括四个阶段:1。通过双边滤波预处理,使文本区域更加稳定。2. 分别使用Canny边缘检测器和最大稳定极值区域(MSER)提取候选文本边缘和区域。然后将这两个特征结合起来,以获得更健壮的结果。3.链接候选字符:考虑水平和垂直方向,使用几何约束将候选字符聚类成文本候选字符。4. 利用支持向量机对候选文本进行分类,分离文本区域和非文本区域。实验结果表明,该方法可以同时检测中英文文本,与仅针对英文文本的检测方法相比,取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrated approach for multilingual scene text detection
Text messages in an image usually contain useful information related to the scene, such as location, name, direction or warning. As such, robust and efficient scene text detection has gained increasing attention in the area of computer vision recently. However, most existing scene text detection methods are devised to process Latin-based languages. For the few researches that reported the investigation of Chinese text, the detection rate was inferior to the result for English. In this research, we propose a multilingual scene text detection algorithm for both Chinese and English. The method comprises of four stages: 1. Preprocessing by bilateral filter to make the text region more stable. 2. Extracting candidate text edge and region using Canny edge detector and Maximally Stable Extremal Region (MSER) respectively. Then combine these two features to achieve more robust results. 3. Linking candidate characters: considering both horizontal and vertical direction, character candidates are clustered into text candidates using geometrical constraints. 4. Classifying candidate texts using support vector machine (SVM), to separate text and non-text areas. Experimental results show that the proposed method detects both Chinese and English texts, and achieve satisfactory performance compared to those approaches designed only for English detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信