Susanna F. de Rezende, Jakob Nordström, Marc Vinyals
{"title":"有限的交互如何阻碍真正的交流(以及它对证明和电路复杂性意味着什么)","authors":"Susanna F. de Rezende, Jakob Nordström, Marc Vinyals","doi":"10.1109/FOCS.2016.40","DOIUrl":null,"url":null,"abstract":"We obtain the first true size-space trade-offs for the cutting planes proof system, where the upper bounds hold for size and total space for derivations with constantsize coefficients, and the lower bounds apply to length and formula space (i.e., number of inequalities in memory) even for derivations with exponentially large coefficients. These are also the first trade-offs to hold uniformly for resolution, polynomial calculus and cutting planes, thus capturing the main methods of reasoning used in current state-of-the-art SAT solvers. We prove our results by a reduction to communication lower bounds in a round-efficient version of the real communication model of [Kraj́ĩcek '98], drawing on and extending techniques in [Raz and McKenzie '99] and [G̈öos et al. '15]. The communication lower bounds are in turn established by a reduction to trade-offs between cost and number of rounds in the game of [Dymond and Tompa '85] played on directed acyclic graphs. As a by-product of the techniques developed to show these proof complexity trade-off results, we also obtain an exponential separation between monotone-ACi-1 and monotone-ACi, improving exponentially over the superpolynomial separation in [Raz and McKenzie '99]. That is, we give an explicit Boolean function that can be computed by monotone Boolean circuits of depth logi n and polynomial size, but for which circuits of depth O(logi-1 n) require exponential size.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"56 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"How Limited Interaction Hinders Real Communication (and What It Means for Proof and Circuit Complexity)\",\"authors\":\"Susanna F. de Rezende, Jakob Nordström, Marc Vinyals\",\"doi\":\"10.1109/FOCS.2016.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the first true size-space trade-offs for the cutting planes proof system, where the upper bounds hold for size and total space for derivations with constantsize coefficients, and the lower bounds apply to length and formula space (i.e., number of inequalities in memory) even for derivations with exponentially large coefficients. These are also the first trade-offs to hold uniformly for resolution, polynomial calculus and cutting planes, thus capturing the main methods of reasoning used in current state-of-the-art SAT solvers. We prove our results by a reduction to communication lower bounds in a round-efficient version of the real communication model of [Kraj́ĩcek '98], drawing on and extending techniques in [Raz and McKenzie '99] and [G̈öos et al. '15]. The communication lower bounds are in turn established by a reduction to trade-offs between cost and number of rounds in the game of [Dymond and Tompa '85] played on directed acyclic graphs. As a by-product of the techniques developed to show these proof complexity trade-off results, we also obtain an exponential separation between monotone-ACi-1 and monotone-ACi, improving exponentially over the superpolynomial separation in [Raz and McKenzie '99]. That is, we give an explicit Boolean function that can be computed by monotone Boolean circuits of depth logi n and polynomial size, but for which circuits of depth O(logi-1 n) require exponential size.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"56 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How Limited Interaction Hinders Real Communication (and What It Means for Proof and Circuit Complexity)
We obtain the first true size-space trade-offs for the cutting planes proof system, where the upper bounds hold for size and total space for derivations with constantsize coefficients, and the lower bounds apply to length and formula space (i.e., number of inequalities in memory) even for derivations with exponentially large coefficients. These are also the first trade-offs to hold uniformly for resolution, polynomial calculus and cutting planes, thus capturing the main methods of reasoning used in current state-of-the-art SAT solvers. We prove our results by a reduction to communication lower bounds in a round-efficient version of the real communication model of [Kraj́ĩcek '98], drawing on and extending techniques in [Raz and McKenzie '99] and [G̈öos et al. '15]. The communication lower bounds are in turn established by a reduction to trade-offs between cost and number of rounds in the game of [Dymond and Tompa '85] played on directed acyclic graphs. As a by-product of the techniques developed to show these proof complexity trade-off results, we also obtain an exponential separation between monotone-ACi-1 and monotone-ACi, improving exponentially over the superpolynomial separation in [Raz and McKenzie '99]. That is, we give an explicit Boolean function that can be computed by monotone Boolean circuits of depth logi n and polynomial size, but for which circuits of depth O(logi-1 n) require exponential size.