连续变化数据环境下的动态模糊c均值聚类

R. P. Sandhir, Satish Kumar
{"title":"连续变化数据环境下的动态模糊c均值聚类","authors":"R. P. Sandhir, Satish Kumar","doi":"10.1109/FUZZY.2010.5584333","DOIUrl":null,"url":null,"abstract":"Many real world applications require online analysis of streaming data, making an adaptive clustering technique desirable. Most adaptive variations of available clustering techniques are application-specific, and do not apply to the applications of clustering as a whole. With this in mind, a generalized algorithm is proposed which is a modification of the fuzzy c-means clustering technique, so that dynamic data environments in differing fields can be addressed and analyzed. We demonstrate the capabilities of the dynamic fuzzy c-means (dFCM) algorithm with the aid of synthetic data sets, and discuss a possible application of the dFCM algorithm in associative memories, through preliminary experiments.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"41 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamic fuzzy c-means (dFCM) clustering for continuously varying data environments\",\"authors\":\"R. P. Sandhir, Satish Kumar\",\"doi\":\"10.1109/FUZZY.2010.5584333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real world applications require online analysis of streaming data, making an adaptive clustering technique desirable. Most adaptive variations of available clustering techniques are application-specific, and do not apply to the applications of clustering as a whole. With this in mind, a generalized algorithm is proposed which is a modification of the fuzzy c-means clustering technique, so that dynamic data environments in differing fields can be addressed and analyzed. We demonstrate the capabilities of the dynamic fuzzy c-means (dFCM) algorithm with the aid of synthetic data sets, and discuss a possible application of the dFCM algorithm in associative memories, through preliminary experiments.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"41 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

许多现实世界的应用程序需要对流数据进行在线分析,因此需要自适应聚类技术。可用集群技术的大多数自适应变体都是特定于应用程序的,并不适用于集群的整个应用程序。在此基础上,提出了一种基于模糊c均值聚类技术的广义聚类算法,可以对不同领域的动态数据环境进行处理和分析。我们在合成数据集的帮助下证明了动态模糊c均值(dFCM)算法的能力,并通过初步实验讨论了dFCM算法在联想记忆中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic fuzzy c-means (dFCM) clustering for continuously varying data environments
Many real world applications require online analysis of streaming data, making an adaptive clustering technique desirable. Most adaptive variations of available clustering techniques are application-specific, and do not apply to the applications of clustering as a whole. With this in mind, a generalized algorithm is proposed which is a modification of the fuzzy c-means clustering technique, so that dynamic data environments in differing fields can be addressed and analyzed. We demonstrate the capabilities of the dynamic fuzzy c-means (dFCM) algorithm with the aid of synthetic data sets, and discuss a possible application of the dFCM algorithm in associative memories, through preliminary experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信