Romain Vial, Hongyuan Zhu, Yonghong Tian, Shijian Lu
{"title":"用周期性和静态YOLO搜索视频行动建议","authors":"Romain Vial, Hongyuan Zhu, Yonghong Tian, Shijian Lu","doi":"10.1109/ICIP.2017.8296639","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for searching action proposals in unconstrained videos. Our method first produces snippet action proposals by combining state-of-the-art YOLO detector (Static YOLO) and our regression based RNN detector (Recurrent YOLO). Then, these short action proposals are integrated to form final action proposals by solving two-pass dynamic programming which maximizes actioness score and temporal smoothness concurrently. Our experimental comparison with other state-of-the-arts on challenging UCF101 dataset shows that our method advances state-of-the-art proposal generation performance while maintaining low computational cost.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Search video action proposal with recurrent and static YOLO\",\"authors\":\"Romain Vial, Hongyuan Zhu, Yonghong Tian, Shijian Lu\",\"doi\":\"10.1109/ICIP.2017.8296639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach for searching action proposals in unconstrained videos. Our method first produces snippet action proposals by combining state-of-the-art YOLO detector (Static YOLO) and our regression based RNN detector (Recurrent YOLO). Then, these short action proposals are integrated to form final action proposals by solving two-pass dynamic programming which maximizes actioness score and temporal smoothness concurrently. Our experimental comparison with other state-of-the-arts on challenging UCF101 dataset shows that our method advances state-of-the-art proposal generation performance while maintaining low computational cost.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Search video action proposal with recurrent and static YOLO
In this paper, we propose a new approach for searching action proposals in unconstrained videos. Our method first produces snippet action proposals by combining state-of-the-art YOLO detector (Static YOLO) and our regression based RNN detector (Recurrent YOLO). Then, these short action proposals are integrated to form final action proposals by solving two-pass dynamic programming which maximizes actioness score and temporal smoothness concurrently. Our experimental comparison with other state-of-the-arts on challenging UCF101 dataset shows that our method advances state-of-the-art proposal generation performance while maintaining low computational cost.