用周期性和静态YOLO搜索视频行动建议

Romain Vial, Hongyuan Zhu, Yonghong Tian, Shijian Lu
{"title":"用周期性和静态YOLO搜索视频行动建议","authors":"Romain Vial, Hongyuan Zhu, Yonghong Tian, Shijian Lu","doi":"10.1109/ICIP.2017.8296639","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for searching action proposals in unconstrained videos. Our method first produces snippet action proposals by combining state-of-the-art YOLO detector (Static YOLO) and our regression based RNN detector (Recurrent YOLO). Then, these short action proposals are integrated to form final action proposals by solving two-pass dynamic programming which maximizes actioness score and temporal smoothness concurrently. Our experimental comparison with other state-of-the-arts on challenging UCF101 dataset shows that our method advances state-of-the-art proposal generation performance while maintaining low computational cost.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Search video action proposal with recurrent and static YOLO\",\"authors\":\"Romain Vial, Hongyuan Zhu, Yonghong Tian, Shijian Lu\",\"doi\":\"10.1109/ICIP.2017.8296639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach for searching action proposals in unconstrained videos. Our method first produces snippet action proposals by combining state-of-the-art YOLO detector (Static YOLO) and our regression based RNN detector (Recurrent YOLO). Then, these short action proposals are integrated to form final action proposals by solving two-pass dynamic programming which maximizes actioness score and temporal smoothness concurrently. Our experimental comparison with other state-of-the-arts on challenging UCF101 dataset shows that our method advances state-of-the-art proposal generation performance while maintaining low computational cost.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种在无约束视频中搜索动作建议的新方法。我们的方法首先通过结合最先进的YOLO检测器(静态YOLO)和基于回归的RNN检测器(循环YOLO)来产生片段动作建议。然后,通过求解动作得分和时间平滑性同时最大化的两步动态规划,将这些短动作方案整合成最终的动作方案。我们与其他最先进的UCF101数据集的实验比较表明,我们的方法在保持低计算成本的同时提高了最先进的提案生成性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Search video action proposal with recurrent and static YOLO
In this paper, we propose a new approach for searching action proposals in unconstrained videos. Our method first produces snippet action proposals by combining state-of-the-art YOLO detector (Static YOLO) and our regression based RNN detector (Recurrent YOLO). Then, these short action proposals are integrated to form final action proposals by solving two-pass dynamic programming which maximizes actioness score and temporal smoothness concurrently. Our experimental comparison with other state-of-the-arts on challenging UCF101 dataset shows that our method advances state-of-the-art proposal generation performance while maintaining low computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信