H&E染色组织病理学图像上的对抗性细胞核分割

O. Koyun, T. Yıldırım
{"title":"H&E染色组织病理学图像上的对抗性细胞核分割","authors":"O. Koyun, T. Yıldırım","doi":"10.1109/INISTA.2019.8778369","DOIUrl":null,"url":null,"abstract":"Computer aided methods in pathology are advancing rapidly. Problems like segmentation, classification and detection of pathology images are solved with machine learning and image processing techniques. State-of-the-art methods in nuclei segmentation problem include supervised deep learning techniques. However, labeling process of pathology images is an expensive and time consuming process. In this work, nuclei segmentation problem is formulated as image-to-image translation problem and using Cycle-Consistent Generative Adversarial Networks, an unsupervised segmentation scheme is proposed for hematoxylin&eosin stained histopathology data.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adversarial Nuclei Segmentation on H&E Stained Histopathology Images\",\"authors\":\"O. Koyun, T. Yıldırım\",\"doi\":\"10.1109/INISTA.2019.8778369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer aided methods in pathology are advancing rapidly. Problems like segmentation, classification and detection of pathology images are solved with machine learning and image processing techniques. State-of-the-art methods in nuclei segmentation problem include supervised deep learning techniques. However, labeling process of pathology images is an expensive and time consuming process. In this work, nuclei segmentation problem is formulated as image-to-image translation problem and using Cycle-Consistent Generative Adversarial Networks, an unsupervised segmentation scheme is proposed for hematoxylin&eosin stained histopathology data.\",\"PeriodicalId\":262143,\"journal\":{\"name\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2019.8778369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

病理学中的计算机辅助方法正在迅速发展。机器学习和图像处理技术解决了病理图像的分割、分类和检测等问题。核分割的最新方法包括监督深度学习技术。然而,病理图像的标记过程是一个昂贵且耗时的过程。在这项工作中,细胞核分割问题被表述为图像到图像的转换问题,并使用循环一致生成对抗网络,提出了一种针对苏木精和伊红染色的组织病理学数据的无监督分割方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Nuclei Segmentation on H&E Stained Histopathology Images
Computer aided methods in pathology are advancing rapidly. Problems like segmentation, classification and detection of pathology images are solved with machine learning and image processing techniques. State-of-the-art methods in nuclei segmentation problem include supervised deep learning techniques. However, labeling process of pathology images is an expensive and time consuming process. In this work, nuclei segmentation problem is formulated as image-to-image translation problem and using Cycle-Consistent Generative Adversarial Networks, an unsupervised segmentation scheme is proposed for hematoxylin&eosin stained histopathology data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信