学习软件定义无线接入网中的资源调度

Xianfu Chen
{"title":"学习软件定义无线接入网中的资源调度","authors":"Xianfu Chen","doi":"10.1109/GLOCOMW.2018.8644407","DOIUrl":null,"url":null,"abstract":"A software-defined control plane simplifies network operations in dense radio access networks (RANs) by abstracting the base stations as a logical centralized network controller (CNC). In a software-defined RAN, the CNC and the wireless service providers (WSPs) can thus be decoupled. The CNC allocates subbands to the mobile terminals (MTs) based on their submitted bids. Such an auction is repeated across time and regulated by the Vickrey-Clarke-Groves pricing mechanism. The objective of an MT subscribed to a particular WSP is to optimize the expected long-term transmit power in transmitting packets subject to a specific Quality-of-Service constraint. We formulate the problem as a multi-agent Markov decision process, where the subband allocation (SA) and packet scheduling decisions are a function of the global network state. To address the challenges of signalling overhead and computational complexity, we approximate the queue state-SA factor by the sum of per-MT queue state value functions, and derive an online localized algorithm to learn them. The presented experiments show significant performance gains from our proposed studies.","PeriodicalId":348924,"journal":{"name":"2018 IEEE Globecom Workshops (GC Wkshps)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Schedule Resources in Software-Defined Radio Access Networks\",\"authors\":\"Xianfu Chen\",\"doi\":\"10.1109/GLOCOMW.2018.8644407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A software-defined control plane simplifies network operations in dense radio access networks (RANs) by abstracting the base stations as a logical centralized network controller (CNC). In a software-defined RAN, the CNC and the wireless service providers (WSPs) can thus be decoupled. The CNC allocates subbands to the mobile terminals (MTs) based on their submitted bids. Such an auction is repeated across time and regulated by the Vickrey-Clarke-Groves pricing mechanism. The objective of an MT subscribed to a particular WSP is to optimize the expected long-term transmit power in transmitting packets subject to a specific Quality-of-Service constraint. We formulate the problem as a multi-agent Markov decision process, where the subband allocation (SA) and packet scheduling decisions are a function of the global network state. To address the challenges of signalling overhead and computational complexity, we approximate the queue state-SA factor by the sum of per-MT queue state value functions, and derive an online localized algorithm to learn them. The presented experiments show significant performance gains from our proposed studies.\",\"PeriodicalId\":348924,\"journal\":{\"name\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2018.8644407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2018.8644407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件定义控制平面通过将基站抽象为逻辑集中式网络控制器(CNC)来简化密集无线接入网(ran)中的网络操作。因此,在软件定义的RAN中,CNC和无线服务提供商(wsp)可以解耦。CNC根据移动终端提交的标书为其分配子频段。这样的拍卖在不同时间重复进行,并受到维克里-克拉克-格罗夫斯定价机制的监管。订阅特定WSP的MT的目标是在传输受特定服务质量约束的数据包时优化预期的长期传输功率。我们将该问题表述为一个多智能体马尔可夫决策过程,其中子带分配(SA)和分组调度决策是全局网络状态的函数。为了解决信令开销和计算复杂性的挑战,我们通过每mt队列状态值函数的总和来近似队列状态sa因子,并推导出一种在线本地化算法来学习它们。所提出的实验表明,我们提出的研究显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Schedule Resources in Software-Defined Radio Access Networks
A software-defined control plane simplifies network operations in dense radio access networks (RANs) by abstracting the base stations as a logical centralized network controller (CNC). In a software-defined RAN, the CNC and the wireless service providers (WSPs) can thus be decoupled. The CNC allocates subbands to the mobile terminals (MTs) based on their submitted bids. Such an auction is repeated across time and regulated by the Vickrey-Clarke-Groves pricing mechanism. The objective of an MT subscribed to a particular WSP is to optimize the expected long-term transmit power in transmitting packets subject to a specific Quality-of-Service constraint. We formulate the problem as a multi-agent Markov decision process, where the subband allocation (SA) and packet scheduling decisions are a function of the global network state. To address the challenges of signalling overhead and computational complexity, we approximate the queue state-SA factor by the sum of per-MT queue state value functions, and derive an online localized algorithm to learn them. The presented experiments show significant performance gains from our proposed studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信