{"title":"基于深度学习和自适应预测控制器的以人为中心的自适应机器人系统","authors":"Sari Toyoguchi, Enrique Coronado, G. Venture","doi":"10.20965/jrm.2023.p0834","DOIUrl":null,"url":null,"abstract":"The rise of single-person households coupled with a drop in social interaction due to the coronavirus disease 2019 (COVID-19) pandemic is triggering a loneliness pandemic. This social issue is producing mental health conditions (e.g., depression and stress) not only in the elderly population but also in young adults. In this context, social robots emerge as human-centered robotics technology that can potentially reduce mental health distress produced by social isolation. However, current robotics systems still do not reach a sufficient communication level to produce an effective coexistence with humans. This paper contributes to the ongoing efforts to produce a more seamless human-robot interaction. For this, we present a novel cognitive architecture that uses (i) deep learning methods for mood recognition from visual and voice modalities, (ii) personality and mood models for adaptation of robot behaviors, and (iii) adaptive generalized predictive controllers (AGPC) to produce suitable robot reactions. Experimental results indicate that our proposed system influenced people’s moods, potentially reducing stress levels during human-robot interaction.","PeriodicalId":178614,"journal":{"name":"J. Robotics Mechatronics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Human-Centered and Adaptive Robotic System Using Deep Learning and Adaptive Predictive Controllers\",\"authors\":\"Sari Toyoguchi, Enrique Coronado, G. Venture\",\"doi\":\"10.20965/jrm.2023.p0834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of single-person households coupled with a drop in social interaction due to the coronavirus disease 2019 (COVID-19) pandemic is triggering a loneliness pandemic. This social issue is producing mental health conditions (e.g., depression and stress) not only in the elderly population but also in young adults. In this context, social robots emerge as human-centered robotics technology that can potentially reduce mental health distress produced by social isolation. However, current robotics systems still do not reach a sufficient communication level to produce an effective coexistence with humans. This paper contributes to the ongoing efforts to produce a more seamless human-robot interaction. For this, we present a novel cognitive architecture that uses (i) deep learning methods for mood recognition from visual and voice modalities, (ii) personality and mood models for adaptation of robot behaviors, and (iii) adaptive generalized predictive controllers (AGPC) to produce suitable robot reactions. Experimental results indicate that our proposed system influenced people’s moods, potentially reducing stress levels during human-robot interaction.\",\"PeriodicalId\":178614,\"journal\":{\"name\":\"J. Robotics Mechatronics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Robotics Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p0834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p0834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Human-Centered and Adaptive Robotic System Using Deep Learning and Adaptive Predictive Controllers
The rise of single-person households coupled with a drop in social interaction due to the coronavirus disease 2019 (COVID-19) pandemic is triggering a loneliness pandemic. This social issue is producing mental health conditions (e.g., depression and stress) not only in the elderly population but also in young adults. In this context, social robots emerge as human-centered robotics technology that can potentially reduce mental health distress produced by social isolation. However, current robotics systems still do not reach a sufficient communication level to produce an effective coexistence with humans. This paper contributes to the ongoing efforts to produce a more seamless human-robot interaction. For this, we present a novel cognitive architecture that uses (i) deep learning methods for mood recognition from visual and voice modalities, (ii) personality and mood models for adaptation of robot behaviors, and (iii) adaptive generalized predictive controllers (AGPC) to produce suitable robot reactions. Experimental results indicate that our proposed system influenced people’s moods, potentially reducing stress levels during human-robot interaction.